Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 9, pp 1791–1799 | Cite as

Modeling and simulation for acrylamide polymerization of super absorbent polymer

  • Gun Hee Lee
  • Nguyen Dat Vo
  • Rak Young Jeon
  • Seung Whan Han
  • Seong Uk HongEmail author
  • Min OhEmail author
Process Systems Engineering, Process Safety
  • 132 Downloads

Abstract

In view of the scale up of a batch reactor for super absorbent polymer (SAP), a dynamic mathematical model of a commercial scale batch reactor was developed with mass balance, energy balance, and complex polymerization kinetics. The kinetic parameters of the polymerization were estimated on the basis of the established mathematical model and reference data. Simulation results were validated with less than 10% marginal error compared with reference data. A case study was executed in terms of dynamic simulation for eight different initial concentrations of initiator and monomer to analyze the influence of initial concentration and predict the operation condition for desired product. The results were compared with various reference data, and good agreement was achieved. From the results, we argue that the methodology and results from this study can be used for the scale up of a polymerization batch reactor from the early stage of design.

Keywords

Super Absorbent Polymer Polyacrylamide Parameter Estimation Dynamic Simulation Batch Reactor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Francis, M. Kumar and L. Varshney, Radiat. Phys. Chem., 69, 481 (2014).CrossRefGoogle Scholar
  2. 2.
    S. C. Chang, J. S. Yoo, J. W. Woo and J. S. Choi, Korean J. Chem. Eng., 16, 581 (1999).CrossRefGoogle Scholar
  3. 3.
    R. E. Sojka and J. A. Entry, Environ. Pollut., 108, 405 (2000).CrossRefPubMedGoogle Scholar
  4. 4.
    J. Z. Mohammad and K. Kabiri, Iran. Polym. J., 17, 451 (2008).Google Scholar
  5. 5.
    M. Wisniewska, S. Chibowski and T. Urban, J. Ind. Eng. Chem., 21, 925 (2015).CrossRefGoogle Scholar
  6. 6.
    G. Sodeifian, R. Daroughegi and J. Aalaie, Korean J. Chem. Eng., 32, 2484 (2015).CrossRefGoogle Scholar
  7. 7.
    D. Chamovsk, M. Cvetkovska and T. Grchev, Croat. Chem. Acta, 81, 461 (2008).Google Scholar
  8. 8.
    A. Pourjavadi and G. R. Mahdavinia, Turk. J. Chem., 30, 595 (2006).Google Scholar
  9. 9.
    A. A. Oladipo, Synthesis and characterization of modified chitosanbased novel superabsorbent hydrogel: swelling and dye adsorption behavior, Master’s Thesis EMU (2011).Google Scholar
  10. 10.
    M. Sadeghi and H. Hosseinzadeh, Turk. J. Chem., 32, 375 (2008).Google Scholar
  11. 11.
    R. A. Scott and N. A. Peppas, AIChE J., 43, 135 (1996).CrossRefGoogle Scholar
  12. 12.
    T. Ishige and A. E. Hamielec, J. Appl. Polym. Sci., 17, 1479 (1973).CrossRefGoogle Scholar
  13. 13.
    A. Giz, H. C. Giz, A. Alb, J. L. Brousseau and W. F. Reed, Macromolecules, 34, 1180 (2001).CrossRefGoogle Scholar
  14. 14.
    D. Hunkeler, Macromolecules, 24, 2160 (1991).CrossRefGoogle Scholar
  15. 15.
    C. Preusser, A. Chovancova, I. Lacik and R. A. Hutchinson, Macromol. React. Eng., 10, 490 (2016).CrossRefGoogle Scholar
  16. 16.
    Process Systems Enterprise Co., https://doi.org/www.psenterprise.com (2017).
  17. 17.
    N. D. Vo, M. Y. Jung, D. H. Oh, J. S. Park, I. Moon and M. Oh, Combust. Flame., 189, 12 (2018).CrossRefGoogle Scholar
  18. 18.
    S. H. Kim, B. W. Nyande, H. S. Kim, J. S. Park, W. J. Lee and M. Oh, J. Hazard. Mater., 308, 120 (2016).CrossRefPubMedGoogle Scholar
  19. 19.
    K. Venkatarao and M. Santappa, J. Polym. Sci., 8, 1785 (1970).CrossRefGoogle Scholar
  20. 20.
    N. Y. Abu-Thabit, World J. Chem. Education, 5, 94 (2017).CrossRefGoogle Scholar
  21. 21.
    A. Echtermeyer, Y. Amar, J. Zakrzewski and A. Lapkin, Beilstein. J. Org. Chem., 13, 150 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    H. R. Lin, Eur. Polym. J., 37, 1507 (2001).CrossRefGoogle Scholar
  23. 23.
    I. Rintoul and C. Wandrey, Lat. Am. Appl. Res., 40, 365 (2010).Google Scholar
  24. 24.
    S. C. Kang, Y. J. Choi, H. Z. Kim, J. B. Kyong and D. K. Kim, Macromol. Res., 12, 107 (2004).CrossRefGoogle Scholar
  25. 25.
    P. Pladis, O. Kotrotsiou, C. Gkementzoglou and C. Kiparissides, A Comprehensive Kinetic Investigation of the Inverse Suspension Copolymerization of Acrylamide: Theoretical and Experimental Studies, 2015 10th Int. Conf. Panhellenic Scientific Conference in Chemical Engineering (2015).Google Scholar
  26. 26.
    Z. Abdollahi and V. G. Gomes, Synthesis and characterization of polyacrylamide with controlled molar weight, Chemeca 2011: Engineering a Better World (2011).Google Scholar
  27. 27.
    J. Xu, W. P. Zhao, C. X. Wang and Y. M. Wu, Express. Polym. Lett., 4, 275 (2010).CrossRefGoogle Scholar
  28. 28.

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringHanbat National UniversityDaejeonKorea
  2. 2.Department of BiologyAdelphi UniversityGarden CityUSA

Personalised recommendations