Korean Journal of Chemical Engineering

, Volume 35, Issue 8, pp 1577–1600 | Cite as

Recent advances on mixed-matrix membranes for gas separation: Opportunities and engineering challenges

  • Mohamad Rezi Abdul Hamid
  • Hae-Kwon Jeong
Invited Review Paper


In the past decades, gas separation using polymeric membranes has received considerable attention and become one of the fastest growing research areas. However, existing polymeric membranes may not be able to keep up with the increasing separation needs for challenging gas mixtures such as N2/CH4 and light olefin/paraffin pairs on industrial scale due to their so-called permeability-selectivity bound. On the other hand, scaling-up issues poise huge challenges for highly permeable and highly selective inorganic membranes. Mixed-matrix membranes, composite membranes, provide an evolutionary solution to debottleneck the permeability-selectivity and scale-up issues currently faced by polymeric and inorganic membranes, respectively. Inorganic fillers in mixed-matrix membranes improve gas permeability and/or selectivity, outperforming polymeric membranes. Combined with relatively economical and simple scaling-up compared to inorganic membranes, mixed-matrix membranes could potentially be a next-generation membrane concept for gas separation applications. This review provides a brief summary on the recent progress in both flat sheet and hollow fiber mixed-matrix membranes with an emphasis on those made over the last five years. A separate section is dedicated to discussing engineering challenges transitioning from laboratory-scale to large-scale synthesis of mixed-matrix membranes. Finally, future prospects and perspectives in mixed-matrix membranes research are briefly outlined.


Metal-organic Frameworks Zeolites Membranes Mixed-matrix Membranes Gas Separation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. S. Sholl and R. P. Lively, Nature, 532, 435 (2016).Google Scholar
  2. 2.
    A.R. Smith and J. Klosek, Fuel Process. Technol., 70, 115 (2001).Google Scholar
  3. 3.
    R. Faiz and K. Li, Desalination, 287, 82 (2012).Google Scholar
  4. 4.
    N.W. Ockwig and T. M. Nenoff, Chem. Rev., 107, 4078 (2007).Google Scholar
  5. 5.
    A. B. Hinchliffe and K. E. Porter, Chem. Eng. Res. Des., 78, 255 (2000).Google Scholar
  6. 6.
    N.R. Council, Separation technologies for the industries of the future, National Academies Press (1999).Google Scholar
  7. 7.
    R. B. Eldridge, Ind. Eng. Chem. Res., 32, 2208 (1993).Google Scholar
  8. 8.
    U. S.D. o. E.O. o.E. Efficiency, R. Energy, U. S.D. o. E.O. o. Scientific and T. Information, Materials for separation technologies: Energy and emission reduction opportunities, United States, Department of Energy. Office of Energy Efficiency and Renewable Energy (2005).Google Scholar
  9. 9.
    W. Ho and K. Sirkar, Membrane handbook, Springer Science & Business Media (2012).Google Scholar
  10. 10.
    M.T. Ravanchi, T. Kaghazchi and A. Kargari, Desalination, 235, 199 (2009).Google Scholar
  11. 11.
    G.W. Meindersma and M. Kuczynski, J. Membr. Sci., 113, 285 (1996).Google Scholar
  12. 12.
    M. Galizia, W.S. Chi, Z.P. Smith, T.C. Merkel, R.W. Baker and B.D. Freeman, Macromolecules, 50, 7809 (2017).Google Scholar
  13. 13.
    M.A. Carreon, S. Li, J. L. Falconer and R.D. Noble, J. Am. Chem. Soc., 130, 5412 (2008).Google Scholar
  14. 14.
    M.Y. Jeon, D. Kim, P. Kumar, P. S. Lee, N. Rangnekar, P. Bai, M. Shete, B. Elyassi, H. S. Lee and K. Narasimharao, Nature, 543, 690 (2017).Google Scholar
  15. 15.
    W. J. Koros and R. Mahajan, J. Membr. Sci., 175, 181 (2000).Google Scholar
  16. 16.
    B. Nandi, R. Uppaluri and M. Purkait, Appl. Clay Sci., 42, 102 (2008).Google Scholar
  17. 17.
    S. Hopkins, High-performance palladium based membrane for hydrogen separation and purification, Pall Corporation (2012).Google Scholar
  18. 18.
    P. S. Goh, A. F. Ismail, S. M. Sanip, B.C. Ng and M. Aziz, Sep. Purif. Technol., 81, 243 (2011).Google Scholar
  19. 19.
    D. Bastani, N. Esmaeili and M. Asadollahi, J. Ind. Eng. Chem., 19, 375 (2013).Google Scholar
  20. 20.
    G. Dong, H. Li and V. Chen, J. Mater. Chem. A, 1, 4610 (2013).Google Scholar
  21. 21.
    N. Jusoh, Y. F. Yeong, T. L. Chew, K. K. Lau and A. M. Shariff, Sep. Purif. Rev., 45, 321 (2016).Google Scholar
  22. 22.
    T.-S. Chung, L.Y. Jiang, Y. Li and S. Kulprathipanja, Prog. Polym. Sci., 32, 483 (2007).Google Scholar
  23. 23.
    J. Dechnik, J. Gascon, C. Doonan, C. Janiak and C. J. Sumby, Angew. Chem. Int. Ed., 56, 9292 (2017).Google Scholar
  24. 24.
    H. B.T. Jeazet, C. Staudt and C. Janiak, Dalton Trans., 41, 14003 (2012).Google Scholar
  25. 25.
    B.D. Freeman, Macromolecules, 32, 375 (1999).Google Scholar
  26. 26.
    B. Ladewig and M.N. Z. Al-Shaeli, Fundamentals of membrane bioreactors, Springer (2017).Google Scholar
  27. 27.
    R.W. Baker, Ind. Eng. Chem. Res., 41, 1393 (2002).Google Scholar
  28. 28.
    P. Bernardo, E. Drioli and G. Golemme, Ind. Eng. Chem. Res., 48, 4638 (2009).Google Scholar
  29. 29.
    L. Zhang, I.-S. Park, K. Shqau, W.W. Ho and H. Verweij, JOM, 61, 61 (2009).Google Scholar
  30. 30.
    N. Hilal, A.F. Ismail and C. Wright, Membrane fabrication, CRC Press (2015).Google Scholar
  31. 31.
    A. F. Ismail, T. Matsuura and K. C. Khulbe, Gas separation membranes: Polymeric and inorganic, Springer (2015).Google Scholar
  32. 32.
    H. Bum Park, E. M.V. Hoek and V.V. Tarabara, Gas separation membranes, Encyclopedia of membrane science and technology, John Wiley & Sons, Inc. (2013).Google Scholar
  33. 33.
    R.W. Baker, Membrane technology and applications, John Wiley & Sons, Ltd. (2004).Google Scholar
  34. 34.
    C.A. Scholes, G.W. Stevens and S. E. Kentish, Fuel, 96, 15 (2012).Google Scholar
  35. 35.
    W. J. Koros and C. Zhang, Nat. Mater., 16, 289 (2017).Google Scholar
  36. 36.
    S. Sridhar, B. Smitha and T. Aminabhavi, Sep. Purif. Rev., 36, 113 (2007).Google Scholar
  37. 37.
    J. Schultz and K.-V. Peinemann, J. Membr. Sci., 110, 37 (1996).Google Scholar
  38. 38.
    K. Ghosal and B.D. Freeman, Polym. Adv. Technol., 5, 673 (1994).Google Scholar
  39. 39.
    Y. Hirayama, T. Yoshinaga, Y. Kusuki, K. Ninomiya, T. Sakakibara and T. Tamari, J. Membr. Sci., 111, 169 (1996).Google Scholar
  40. 40.
    T. Kim, W. Koros, G. Husk and K. O’brien, J. Membr. Sci., 37, 45 (1988).Google Scholar
  41. 41.
    A.M. Hillock and W. J. Koros, Macromolecules, 40, 583 (2007).Google Scholar
  42. 42.
    W. Qiu, L. Xu, C.-C. Chen, D.R. Paul and W. J. Koros, Polymer, 54, 6226 (2013).Google Scholar
  43. 43.
    C. Cao, T.-S. Chung, Y. Liu, R. Wang and K. Pramoda, J. Membr. Sci., 216, 257 (2003).Google Scholar
  44. 44.
    H. Yang, Z. Xu, M. Fan, R. Gupta, R.B. Slimane, A.E. Bland and I. Wright, J. Environ. Sci., 20, 14 (2008).Google Scholar
  45. 45.
    A.A. Olajire, Energy, 35, 2610 (2010).Google Scholar
  46. 46.
    C. E. Powell and G.G. Qiao, J. Membr. Sci., 279, 1 (2006).Google Scholar
  47. 47.
    S. L. Liu, L. Shao, M. L. Chua, C. H. Lau, H. Wang and S. Quan, Prog. Polym. Sci., 38, 1089 (2013).Google Scholar
  48. 48.
    K. Vanherck, G. Koeckelberghs and I. F. Vankelecom, Prog. Polym. Sci., 38, 874 (2013).Google Scholar
  49. 49.
    W. Qiu, C.-C. Chen, L. Xu, L. Cui, D.R. Paul and W. J. Koros, Macromolecules, 44, 6046 (2011).Google Scholar
  50. 50.
    A.M. Kratochvil and W. J. Koros, Macromolecules, 41, 7920 (2008).Google Scholar
  51. 51.
    I.C. Omole, S. J. Miller and W. J. Koros, Macromolecules, 41, 6367 (2008).Google Scholar
  52. 52.
    L.M. Robeson, J. Membr. Sci., 62, 165 (1991).Google Scholar
  53. 53.
    L.M. Robeson, J. Membr. Sci., 320, 390 (2008).Google Scholar
  54. 54.
    R. Sehgal and C. J. Brinker, US Patent, 5,772,735 (1998).Google Scholar
  55. 55.
    S. Kluiters, Energy Center of the Netherlands, Petten, The Netherlands (2004).Google Scholar
  56. 56.
    A. F. Ismail and L. David, J. Membr. Sci., 193, 1 (2001).Google Scholar
  57. 57.
    J. Caro, Chem. Soc. Rev., 45, 3468 (2016).Google Scholar
  58. 58.
    A. Tavolaro and E. Drioli, Adv. Mater., 11, 975 (1999).Google Scholar
  59. 59.
    Y. Lin and M. C. Duke, Curr. Opin. Chem. Eng., 2, 209 (2013).Google Scholar
  60. 60.
    J. Gascon, F. Kapteijn, B. Zornoza, V. Sebastián, C. Casado and J. Coronas, Chem. Mater., 24, 2829 (2012).Google Scholar
  61. 61.
    S. Yang, Z. Cao, A. Arvanitis, X. Sun, Z. Xu and J. Dong, J. Membr. Sci., 505, 194 (2016).Google Scholar
  62. 62.
    T. Tomita, K. Nakayama and H. Sakai, Micropor. Mesopor. Mater., 68, 71 (2004).Google Scholar
  63. 63.
    S. Himeno, T. Tomita, K. Suzuki, K. Nakayama, K. Yajima and S. Yoshida, Ind. Eng. Chem. Res., 46, 6989 (2007).Google Scholar
  64. 64.
    J. C. White, P. K. Dutta, K. Shqau and H. Verweij, Langmuir, 26, 10287 (2010).Google Scholar
  65. 65.
    K. Kusakabe, T. Kuroda, A. Murata and S. Morooka, Ind. Eng. Chem. Res., 36, 649 (1997).Google Scholar
  66. 66.
    K. Kusakabe, S. Yoneshige, A. Murata and S. Morooka, J. Membr. Sci., 116, 39 (1996).Google Scholar
  67. 67.
    T. Lee, J. Choi and M. Tsapatsis, J. Membr. Sci., 436, 79 (2013).Google Scholar
  68. 68.
    M.B. Hägg, J.A. Lie and A. Lindbråthen, Ann. N. Y. Acad. Sci., 984, 329 (2003).Google Scholar
  69. 69.
    D.Q. Vu, W. J. Koros and S. J. Miller, Ind. Eng. Chem. Res., 41, 367 (2002).Google Scholar
  70. 70.
    M. Kiyono, P. J. Williams and W. J. Koros, J. Membr. Sci., 359, 2 (2010).Google Scholar
  71. 71.
    X. Ning and W. J. Koros, Carbon, 66, 511 (2014).Google Scholar
  72. 72.
    Y.K. Kim, J. M. Lee, H.B. Park and Y. M. Lee, J. Membr. Sci., 235, 139 (2004).Google Scholar
  73. 73.
    Y.K. Kim, H.B. Park and Y. M. Lee, J. Membr. Sci., 255, 265 (2005).Google Scholar
  74. 74.
    H.-H. Tseng and A. K. Itta, J. Membr. Sci., 389, 223 (2012).Google Scholar
  75. 75.
    X. Ma, Y. Lin, X. Wei and J. Kniep, AIChE J., 62, 491 (2016).Google Scholar
  76. 76.
    J.-i. Hayashi, H. Mizuta, M. Yamamoto, K. Kusakabe, S. Morooka and S.-H. Suh, Ind. Eng. Chem. Res., 35, 4176 (1996).Google Scholar
  77. 77.
    X. Ma, B. K. Lin, X. Wei, J. Kniep and Y. Lin, Ind. Eng. Chem. Res., 52, 4297 (2013).Google Scholar
  78. 78.
    S. Adhikari and S. Fernando, Ind. Eng. Chem. Res., 45, 875 (2006).Google Scholar
  79. 79.
    J.-R. Li, R. J. Kuppler and H.-C. Zhou, Chem. Soc. Rev., 38, 1477 (2009).Google Scholar
  80. 80.
    H. Furukawa, K. E. Cordova, M. O’Keeffe and O.M. Yaghi, Science, 341, 1230444 (2013).Google Scholar
  81. 81.
    K. S. Park, Z. Ni, A. P. Côté, J.Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe and O. M. Yaghi, Proc. Natl. Acad. Sci. U.S.A., 103, 10186 (2006).Google Scholar
  82. 82.
    B. Wang, A. P. Côté, H. Furukawa, M. O’Keeffe and O. M. Yaghi, Nature, 453, 207 (2008).Google Scholar
  83. 83.
    A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’keeffe and O. M. Yaghi, Acc. Chem. Res., 43, 58 (2010).Google Scholar
  84. 84.
    R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’keeffe and O. M. Yaghi, Science, 319, 939 (2008).Google Scholar
  85. 85.
    Y. Li, F. Liang, H. Bux, W. Yang and J. Caro, J. Membr. Sci., 354, 48 (2010).Google Scholar
  86. 86.
    Y. Pan and Z. Lai, ChemComm, 47, 10275 (2011).Google Scholar
  87. 87.
    A. Huang, H. Bux, F. Steinbach and J. Caro, Angew. Chem., 122, 5078 (2010).Google Scholar
  88. 88.
    Y. Liu, E. Hu, E.A. Khan and Z. Lai, J. Membr. Sci., 353, 36 (2010).Google Scholar
  89. 89.
    A. Huang, W. Dou and J. r. Caro, J. Am. Chem. Soc., 132, 15562 (2010).Google Scholar
  90. 90.
    M. J. Lee, H.T. Kwon and H.-K. Jeong, J. Membr. Sci., 529, 105 (2017).Google Scholar
  91. 91.
    C. Colling and G. Huff, US Patent, 10/183793 (2004).Google Scholar
  92. 92.
    J. Choi, H.-K. Jeong, M.A. Snyder, J. A. Stoeger, R. I. Masel and M. Tsapatsis, Science, 325, 590 (2009).Google Scholar
  93. 93.
    G. Xomeritakis, Z. Lai and M. Tsapatsis, Ind. Eng. Chem. Res., 40, 544 (2001).Google Scholar
  94. 94.
    R. Gemmer, Membrane technology workshop summary report, Washington, DC (2012).Google Scholar
  95. 95.
    D.Q. Vu, W. J. Koros and S. J. Miller, J. Membr. Sci., 211, 311 (2003).Google Scholar
  96. 96.
    A. F. Ismail, P. S. Goh, S. M. Sanip and M. Aziz, Sep. Purif. Technol., 70, 12 (2009).Google Scholar
  97. 97.
    W. J. Koros, J. Membr. Sci. Technol., 26, 1 (2006).Google Scholar
  98. 98.
    Z. Wang, D. Wang, S. Zhang, L. Hu and J. Jin, Adv. Mater., 28, 3399 (2016).Google Scholar
  99. 99.
    R. Mahajan and W. J. Koros, Ind. Eng. Chem. Res., 39, 2692 (2000).Google Scholar
  100. 100.
    S. Keskin and D. S. Sholl, Energy Environ. Sci., 3, 343 (2010).Google Scholar
  101. 101.
    T. Merkel, B. Freeman, R. Spontak, Z. He, I. Pinnau, P. Meakin and A. Hill, Science, 296, 519 (2002).Google Scholar
  102. 102.
    N. A. H. M. Nordin, A. F. Ismail, A. Mustafa, R. S. Murali and T. Matsuura, RSC Adv., 5, 30206 (2015).Google Scholar
  103. 103.
    D. Paul and D. Kemp, J. Polym. Sci.: Polym. Symposia, 41, 79 (1973).Google Scholar
  104. 104.
    J. Wijmans and R. Baker, J. Membr. Sci., 107, 1 (1995).Google Scholar
  105. 105.
    J.D. Seader and E. J. Henley, Separation process principles, John Wiley (2005).Google Scholar
  106. 106.
    W. Koros, G. Fleming, S. Jordan, T. Kim and H. Hoehn, Prog. Polym. Sci., 13, 339 (1988).Google Scholar
  107. 107.
    A. Singh and W. Koros, Ind. Eng. Chem. Res., 35, 1231 (1996).Google Scholar
  108. 108.
    S. Hashemifard, A. Ismail and T. Matsuura, J. Membr. Sci., 347, 53 (2010).Google Scholar
  109. 109.
    J. C. Maxwell, Treatise on electricity and magnetism, Oxford Univ. Press (1873).Google Scholar
  110. 110.
    R. Mahajan and W. J. Koros, Polym. Eng. Sci., 42, 1420 (2002).Google Scholar
  111. 111.
    R. Mahajan and W. J. Koros, Polym. Eng. Sci., 42, 1432 (2002).Google Scholar
  112. 112.
    R. Pal, J. Colloid Interface Sci., 317, 191 (2008).Google Scholar
  113. 113.
    V.D. Bruggeman, Ann. Phys., 416, 636 (1935).Google Scholar
  114. 114.
    B. Shimekit, H. Mukhtar and T. Murugesan, J. Membr. Sci., 373, 152 (2011).Google Scholar
  115. 115.
    T. Lewis and L. Nielsen, J. Appl. Polym. Sci., 14, 1449 (1970).Google Scholar
  116. 116.
    L. E. Nielsen, J. Appl. Polym. Sci., 17, 3819 (1973).Google Scholar
  117. 117.
    R. Pal, J. Reinf. Plast. Compos., 26, 643 (2007).Google Scholar
  118. 118.
    B. Shimekit and H. Mukhtar, Gas permeation models in mixed matrix membranes, 2011 National Postgraduate Conference, 1 (2011).Google Scholar
  119. 119.
    J. Felske, Int. J. Heat Mass Transfer, 47, 3453 (2004).Google Scholar
  120. 120.
    H. Vinh-Thang and S. Kaliaguine, Chem. Rev., 113, 4980 (2013).Google Scholar
  121. 121.
    B. Freeman and Y. Yampolskii, Membrane gas separation, John Wiley & Sons (2011).Google Scholar
  122. 122.
    M. F. A. Wahab, A. F. Ismail and S. J. Shilton, Sep. Purif. Technol., 86, 41 (2012).Google Scholar
  123. 123.
    S. Kulprathipanja, R.W. Neuzil and N. N. Li, US Patent, 4,740,219 (1988).Google Scholar
  124. 124.
    E.V. Perez, C. Karunaweera, I.H. Musselman, K. J. Balkus and J. P. Ferraris, Processes, 4, 32 (2016).Google Scholar
  125. 125.
    G. Dong, H. Li and V. Chen, J. Membr. Sci., 353, 17 (2010).Google Scholar
  126. 126.
    N. Alaslai, B. Ghanem, F. Alghunaimi, E. Litwiller and I. Pinnau, J. Membr. Sci., 505, 100 (2016).Google Scholar
  127. 127.
    H. Wang, L. Huang, B.A. Holmberg and Y. Yan, ChemComm, 1708 (2002).Google Scholar
  128. 128.
    S. Li, J. L. Falconer and R.D. Noble, Adv. Mater., 18, 2601 (2006).Google Scholar
  129. 129.
    R. Surya Murali, A.F. Ismail, M.A. Rahman and S. Sridhar, Sep. Purif. Technol., 129, 1 (2014).Google Scholar
  130. 130.
    M. Junaidi, C. Leo, A. Ahmad, S. Kamal and T. Chew, Fuel Process. Technol., 118, 125 (2014).Google Scholar
  131. 131.
    H. Gong, S. S. Lee and T.-H. Bae, Micropor. Mesopor. Mater., 237, 82 (2017).Google Scholar
  132. 132.
    I. Tirouni, M. Sadeghi and M. Pakizeh, Sep. Purif. Technol., 141, 394 (2015).Google Scholar
  133. 133.
    J. Ahmad and M.-B. Hägg, J. Membr. Sci., 427, 73 (2013).Google Scholar
  134. 134.
    J. Ahmad and M.-B. Hägg, Sep. Purif. Technol., 115, 190 (2013).Google Scholar
  135. 135.
    M. Rezakazemi, K. Shahidi and T. Mohammadi, Int. J. Hydrog. Energy, 37, 14576 (2012).Google Scholar
  136. 136.
    D. Zhao, J. Ren, H. Li, K. Hua and M. Deng, J. Energy Chem., 23, 227 (2014).Google Scholar
  137. 137.
    H. Rabiee, S. M. Alsadat, M. Soltanieh, S. A. Mousavi and A. Ghadimi, J. Ind. Eng. Chem., 27, 223 (2015).Google Scholar
  138. 138.
    U. Cakal, L. Yilmaz and H. Kalipcilar, J. Membr. Sci., 417, 45 (2012).Google Scholar
  139. 139.
    M. Peydayesh, S. Asarehpour, T. Mohammadi and O. Bakhtiari, Chem. Eng. Res. Des., 91, 1335 (2013).Google Scholar
  140. 140.
    M. Loloei, M. Omidkhah, A. Moghadassi and A. E. Amooghin, Int. J. Greenhouse Gas Cont., 39, 225 (2015).Google Scholar
  141. 141.
    F. Dorosti, M. Omidkhah and R. Abedini, J. Nat. Gas Sci. Eng., 25, 88 (2015).Google Scholar
  142. 142.
    N. Jusoh, Y. F. Yeong, K. K. Lau and A. M. Shariff, J. Membr. Sci., 525, 175 (2017).Google Scholar
  143. 143.
    H. Sanaeepur, A. Kargari, B. Nasernejad, A. Ebadi Amooghin and M. Omidkhah, J. Taiwan Inst. Chem. Eng., 60, 403 (2016).Google Scholar
  144. 144.
    X.Y. Chen, O.G. Nik, D. Rodrigue and S. Kaliaguine, Polymer, 53, 3269 (2012).Google Scholar
  145. 145.
    K. Zarshenas, A. Raisi and A. Aroujalian, J. Membr. Sci., 510, 270 (2016).Google Scholar
  146. 146.
    G. Férey, Chem. Soc. Rev., 37, 191 (2008).Google Scholar
  147. 147.
    J. J. Perry Iv, J.A. Perman and M. J. Zaworotko, Chem. Soc. Rev., 38, 1400 (2009).Google Scholar
  148. 148.
    S.T. Meek, J. A. Greathouse and M.D. Allendorf, Adv. Mater., 23, 249 (2011).Google Scholar
  149. 149.
    H. Yehia, T. Pisklak, J. Ferraris, K. Balkus and I. Musselman, Abstracts of Papers of the American Chemical Society, 227, U351 (2004).Google Scholar
  150. 150.
    C. Zhang, R.P. Lively, K. Zhang, J.R. Johnson, O. Karvan and W. J. Koros, J. Phys. Chem. Lett., 3, 2130 (2012).Google Scholar
  151. 151.
    K. Li, D. H. Olson, J. Seidel, T. J. Emge, H. Gong, H. Zeng and J. Li, J. Am. Chem. Soc., 131, 10368 (2009).Google Scholar
  152. 152.
    K. Leng, Y. Sun, X. Li, S. Sun and W. Xu, Cryst. Growth Des., 16, 1168 (2016).Google Scholar
  153. 153.
    G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé and I. Margiolaki, Science, 309, 2040 (2005).Google Scholar
  154. 154.
    H.T. Kwon, H.-K. Jeong, A. S. Lee, H. S. An and J. S. Lee, J. Am. Chem. Soc., 137, 12304 (2015).Google Scholar
  155. 155.
    P. Krokidas, M. Castier, S. Moncho, D.N. Sredojevic, E.N. Brothers, H.T. Kwon, H.-K. Jeong, J. S. Lee and I. G. Economou, J. Phys. Chem. C, 120, 8116 (2016).Google Scholar
  156. 156.
    H. An, S. Park, H.T. Kwon, H.-K. Jeong and J. S. Lee, J. Membr. Sci., 526, 367 (2017).Google Scholar
  157. 157.
    H. Wu, Y. S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim and W. Zhou, J. Am. Chem. Soc., 135, 10525 (2013).Google Scholar
  158. 158.
    G. E. Cmarik, M. Kim, S. M. Cohen and K. S. Walton, Langmuir, 28, 15606 (2012).Google Scholar
  159. 159.
    J. Shen, G. Liu, K. Huang, Q. Li, K. Guan, Y. Li and W. Jin, J. Membr. Sci., 513, 155 (2016).Google Scholar
  160. 160.
    B. Yuan, D. Ma, X. Wang, Z. Li, Y. Li, H. Liu and D. He, Chem-Comm, 48, 1135 (2012).Google Scholar
  161. 161.
    A.L. Khan, C. Klaysom, A. Gahlaut, A.U. Khan and I.F. Vankelecom, J. Membr. Sci., 447, 73 (2013).Google Scholar
  162. 162.
    S. Biswas, D. E. Vanpoucke, T. Verstraelen, M. Vandichel, S. Couck, K. Leus, Y.-Y. Liu, M. Waroquier, V. Van Speybroeck and J. F. Denayer, J. Phys. Chem. C, 117, 22784 (2013).Google Scholar
  163. 163.
    M. Waqas Anjum, B. Bueken, D. De Vos and I.F. J. Vankelecom, J. Membr. Sci., 502, 21 (2016).Google Scholar
  164. 164.
    A. Knebel, S. Friebe, N. C. Bigall, M. Benzaqui, C. Serre and J. r. Caro, ACS Appl. Mater. Interfaces, 8, 7536 (2016).Google Scholar
  165. 165.
    S. Park, W.R. Kang, H.T. Kwon, S. Kim, M. Seo, J. Bang, S. H. Lee, H.K. Jeong and J. S. Lee, J. Membr. Sci., 486, 29 (2015).Google Scholar
  166. 166.
    H. Li, L. Tuo, K. Yang, H.-K. Jeong, Y. Dai, G. He and W. Zhao, J. Membr. Sci., 511, 130 (2016).Google Scholar
  167. 167.
    W. S. Chi, S. Hwang, S.-J. Lee, S. Park, Y.-S. Bae, D.Y. Ryu, J. H. Kim and J. Kim, J. Membr. Sci., 495, 479 (2015).Google Scholar
  168. 168.
    J. Sánchez-Laínez, B. Zornoza, S. Friebe, J. Caro, S. Cao, A. Sabetghadam, B. Seoane, J. Gascon, F. Kapteijn and C. Le Guillouzer, J. Membr. Sci., 515, 45 (2016).Google Scholar
  169. 169.
    A. Jomekian, R.M. Behbahani, T. Mohammadi and A. Kargari, J. Nat. Gas Sci. Eng., 31, 562 (2016).Google Scholar
  170. 170.
    N. A. H.M. Nordin, S.M. Racha, T. Matsuura, N. Misdan, N. A.A. Sani, A. F. Ismail and A. Mustafa, RSC Adv., 5, 43110 (2015).Google Scholar
  171. 171.
    N. Jusoh, Y.F. Yeong, K.K. Lau and A.M. Shariff, J. Clean. Prod., 149, 80 (2017).Google Scholar
  172. 172.
    S. Shahid, K. Nijmeijer, S. Nehache, I. Vankelecom, A. Deratani and D. Quemener, J. Membr. Sci., 492, 21 (2015).Google Scholar
  173. 173.
    C. Zhang, Y. Dai, J.R. Johnson, O. Karvan and W. J. Koros, J. Membr. Sci., 389, 34 (2012).Google Scholar
  174. 174.
    M. Fang, C. Wu, Z. Yang, T. Wang, Y. Xia and J. Li, J. Membr. Sci., 474, 103 (2015).Google Scholar
  175. 175.
    A.F. Bushell, M.P. Attfield, C.R. Mason, P.M. Budd, Y. Yampolskii, L. Starannikova, A. Rebrov, F. Bazzarelli, P. Bernardo and J.C. Jansen, J. Membr. Sci., 427, 48 (2013).Google Scholar
  176. 176.
    M. Askari and T.-S. Chung, J. Membr. Sci., 444, 173 (2013).Google Scholar
  177. 177.
    H.R. Amedi and M. Aghajani, Micropor. Mesopor. Mater., 247, 124 (2017).Google Scholar
  178. 178.
    S. Hwang, W. S. Chi, S. J. Lee, S. H. Im, J. H. Kim and J. Kim, J. Membr. Sci., 480, 11 (2015).Google Scholar
  179. 179.
    H. S. Kunjattu, V. Ashok, A. Bhaskar, K. Pandare, R. Banerjee and U.K. Kharul, J. Membr. Sci., 549, 38 (2018).Google Scholar
  180. 180.
    S.N. Wijenayake, N. P. Panapitiya, S. H. Versteeg, C. N. Nguyen, S. Goel, K. J. Balkus Jr., I. H. Musselman and J. P. Ferraris, Ind. Eng. Chem. Res., 52, 6991 (2013).Google Scholar
  181. 181.
    L. Diestel, N. Wang, B. Schwiedland, F. Steinbach, U. Giese and J. Caro, J. Membr. Sci., 492, 181 (2015).Google Scholar
  182. 182.
    J. Sánchez-Laínez, B. Zornoza, Á. Mayoral, Á. Berenguer-Murcia, D. Cazorla-Amorós, C. Téllez and J. Coronas, J. Mater. Chem. A, 3, 6549 (2015).Google Scholar
  183. 183.
    M. S. Boroglu and A. B. Yumru, Sep. Purif. Technol., 173, 269 (2017).Google Scholar
  184. 184.
    X. Wu, W. Liu, H. Wu, X. Zong, L. Yang, Y. Wu, Y. Ren, C. Shi, S. Wang and Z. Jiang, J. Membr. Sci., 548, 309 (2018).Google Scholar
  185. 185.
    J. Yuan, H. Zhu, J. Sun, Y. Mao, G. Liu and W. Jin, ACS Appl. Mater. Interfaces, 9, 38575 (2017).Google Scholar
  186. 186.
    E.V. Perez, G. J. Kalaw, J.P. Ferraris, K. J. Balkus and I.H. Musselman, J. Membr. Sci., 530, 201 (2017).Google Scholar
  187. 187.
    T. Rodenas, M. van Dalen, E. García-Pérez, P. Serra-Crespo, B. Zornoza, F. Kapteijn and J. Gascon, Adv. Funct. Mater., 24, 249 (2014).Google Scholar
  188. 188.
    Q. Xin, J. Ouyang, T. Liu, Z. Li, Z. Li, Y. Liu, S. Wang, H. Wu, Z. Jiang and X. Cao, ACS Appl. Mater. Interfaces, 7, 1065 (2015).Google Scholar
  189. 189.
    Q. Xin, T. Liu, Z. Li, S. Wang, Y. Li, Z. Li, J. Ouyang, Z. Jiang and H. Wu, J. Membr. Sci., 488, 67 (2015).Google Scholar
  190. 190.
    H.B. Tanh Jeazet, S. Sorribas, J. M. Román-Marín, B. Zornoza, C. Téllez, J. Coronas and C. Janiak, Eur. J. Inorg. Chem., 2016, 4363 (2016).Google Scholar
  191. 191.
    T. Rodenas, M. van Dalen, P. Serra-Crespo, F. Kapteijn and J. Gascon, Micropor. Mesopor. Mater., 192, 35 (2014).Google Scholar
  192. 192.
    X. Guo, H. Huang, Y. Ban, Q. Yang, Y. Xiao, Y. Li, W. Yang and C. Zhong, J. Membr. Sci., 478, 130 (2015).Google Scholar
  193. 193.
    M.Z. Ahmad, M. Navarro, M. Lhotka, B. Zornoza, C. Téllez, V. Fila and J. Coronas, Sep. Purif. Technol., 192, 465 (2018).Google Scholar
  194. 194.
    M.W. Anjum, F. Vermoortele, A.L. Khan, B. Bueken, D.E. De Vos and I. F. Vankelecom, ACS Appl. Mater. Interfaces, 7, 25193 (2015).Google Scholar
  195. 195.
    S. J. Smith, B. P. Ladewig, A. J. Hill, C. H. Lau and M.R. Hill, Sci. Rep., 5 (2015).Google Scholar
  196. 196.
    T.-H. Bae and J.R. Long, Energy Environ. Sci., 6, 3565 (2013).Google Scholar
  197. 197.
    N. Tien-Binh, H. Vinh-Thang, X.Y. Chen, D. Rodrigue and S. Kaliaguine, J. Membr. Sci., 520, 941 (2016).Google Scholar
  198. 198.
    J.E. Bachman, Z.P. Smith, T. Li, T. Xu and J.R. Long, Nat. Mater., 15, 845 (2016).Google Scholar
  199. 199.
    S. Saufi and A. Ismail, Carbon, 42, 241 (2004).Google Scholar
  200. 200.
    H. Suda and K. Haraya, J. Phys. Chem. B, 101, 3988 (1997).Google Scholar
  201. 201.
    R. Nasir, H. Mukhtar, Z. Man, M.S. Shaharun and M.Z.A. Bakar, RSC Adv., 5, 60814 (2015).Google Scholar
  202. 202.
    R. Nasir, H. Mukhtar, Z. Man, B.K. Dutta, M.S. Shaharun and M. Z. A. Bakar, J. Membr. Sci., 483, 84 (2015).Google Scholar
  203. 203.
    L.Y. Ng, A.W. Mohammad, C.P. Leo and N. Hilal, Desalination, 308, 15 (2013).Google Scholar
  204. 204.
    L. Xu, C. Zhang, M. Rungta, W. Qiu, J. Liu and W. J. Koros, J. Membr. Sci., 459, 223 (2014).Google Scholar
  205. 205.
    A. Fernández-Barquín, C. Casado-Coterillo, M. Etxeberria-Benavides, J. Zuñiga and A. Irabien, Chem. Eng. Technol., 40, 997 (2017).Google Scholar
  206. 206.
    J. Hu, H. Cai, H. Ren, Y. Wei, Z. Xu, H. Liu and Y. Hu, Ind. Eng. Chem. Res., 49, 12605 (2010).Google Scholar
  207. 207.
    C. Zhang, K. Zhang, L. Xu, Y. Labreche, B. Kraftschik and W. J. Koros, AIChE J., 60, 2625 (2014).Google Scholar
  208. 208.
    H. Zhu, X. Jie and Y. Cao, J. Chem., 2017 (2017).Google Scholar
  209. 209.
    H. Zhu, X. Jie, L. Wang, G. Kang, D. Liu and Y. Cao, RSC Adv., 6, 69124 (2016).Google Scholar
  210. 210.
    P.D. Sutrisna, J. Hou, H. Li, Y. Zhang and V. Chen, J. Membr. Sci., 524, 266 (2017).Google Scholar
  211. 211.
    Y. Dai, J. Johnson, O. Karvan, D. S. Sholl and W. Koros, J. Membr. Sci., 401, 76 (2012).Google Scholar
  212. 212.
    A. I. Skoulidas, D.M. Ackerman, J.K. Johnson and D. S. Sholl, Phys. Rev. Lett., 89, 185901 (2002).Google Scholar
  213. 213.
    L. Zhang, B. Zhao, X. Wang, Y. Liang, H. Qiu, G. Zheng and J. Yang, Carbon, 66, 11 (2014).Google Scholar
  214. 214.
    K. Zahri, K. Wong, P. Goh and A. Ismail, RSC Adv., 6, 89130 (2016).Google Scholar
  215. 215.
    A. Zulhairun, M. Subramaniam, A. Samavati, M. Ramli, M. Krishparao, P. Goh and A. Ismail, Sep. Purif. Technol., 180, 13 (2017).Google Scholar
  216. 216.
    H. Dzinun, M.H.D. Othman, A. Ismail, M.H. Puteh, M. A. Rahman and J. Jaafar, J. Membr. Sci., 479, 123 (2015).Google Scholar
  217. 217.
    T. Yang, G. M. Shi and T. S. Chung, Adv. Energy Mater., 2, 1358 (2012).Google Scholar
  218. 218.
    A. Zulhairun, Z. Fachrurrazi, M.N. Izwanne and A. Ismail, Sep. Purif. Technol., 146, 85 (2015).Google Scholar
  219. 219.
    A. Zulhairun, B. Ng, A. Ismail, R.S. Murali and M. Abdullah, Sep. Purif. Technol., 137, 1 (2014).Google Scholar
  220. 220.
    A.D. Ghomshani, A. Ghaee, Z. Mansourpour, M. Esmaili and B. Sadatnia, Polym. Plast. Technol. Eng., 55, 1155 (2016).Google Scholar
  221. 221.
    P.S. Goh, B. Ng, A.F. Ismail, M. Aziz and Y. Hayashi, J. Colloid Interface Sci., 386, 80 (2012).Google Scholar
  222. 222.
    E. P. Favvas, S. F. Nitodas, A.A. Stefopoulos, S.K. Papageorgiou, K. L. Stefanopoulos and A.C. Mitropoulos, Sep. Purif. Technol., 122, 262 (2014).Google Scholar
  223. 223.
    S. Loeb and S. Sourirajan, Sea water demineralization by means of an osmotic membrane, ACS Publications (1962).Google Scholar
  224. 224.
    D.F. Sanders, Z.P. Smith, R. Guo, L.M. Robeson, J.E. McGrath, D.R. Paul and B.D. Freeman, Polymer, 54, 4729 (2013).Google Scholar
  225. 225.
    R.W. Baker and B.T. Low, Macromolecules, 47, 6999 (2014).Google Scholar
  226. 226.
    M. A. Aroon, A. F. Ismail, T. Matsuura and M. M. Montazer-Rahmati, Sep. Purif. Technol., 75, 229 (2010).Google Scholar
  227. 227.
    Y. Li, T.-S. Chung, Z. Huang and S. Kulprathipanja, J. Membr. Sci., 277, 28 (2006).Google Scholar
  228. 228.
    S.A. McKelvey, D.T. Clausi and W. J. Koros, J. Membr. Sci., 124, 223 (1997).Google Scholar
  229. 229.
    D.W. Wallace, C. Staudt-Bickel and W. J. Koros, J. Membr. Sci., 278, 92 (2006).Google Scholar
  230. 230.
    S. Husain and W. J. Koros, J. Membr. Sci., 288, 195 (2007).Google Scholar
  231. 231.
    E.V. Perez, K. J. Balkus, J. P. Ferraris and I. H. Musselman, J. Membr. Sci., 328, 165 (2009).Google Scholar
  232. 232.
    T. S. Chung, S. K. Teoh and X. Hu, J. Membr. Sci., 133, 161 (1997).Google Scholar
  233. 233.
    J. M. S. Henis and M. K. Tripodi, US Patent, 4,230,463 (1980).Google Scholar
  234. 234.
    L.Y. Jiang, T. S. Chung and S. Kulprathipanja, J. Membr. Sci., 276, 113 (2006).Google Scholar
  235. 235.
    Y. Li, W. B. Krantz and T. S. Chung, AIChE J., 53, 2470 (2007).Google Scholar
  236. 236.
    T. Yang, Y. Xiao and T.-S. Chung, Energy Environ. Sci., 4, 4171 (2011).Google Scholar
  237. 237.
    L. Ge, W. Zhou, V. Rudolph and Z. Zhu, J. Mater. Chem. A, 1, 6350 (2013).Google Scholar
  238. 238.
    V. Nafisi and M.-B. Hägg, J. Membr. Sci., 459, 244 (2014).Google Scholar
  239. 239.
    B. Seoane, J. Coronas, I. Gascon, M.E. Benavides, O. Karvan, J. Caro, F. Kapteijn and J. Gascon, Chem. Soc. Rev., 44, 2421 (2015).Google Scholar
  240. 240.
    L.Y. Jiang, T. S. Chung, C. Cao, Z. Huang and S. Kulprathipanja, J. Membr. Sci., 252, 89 (2005).Google Scholar
  241. 241.
    Y. Xiao, K.Y. Wang, T.-S. Chung and J. Tan, Chem. Eng. Sci., 61, 6228 (2006).Google Scholar
  242. 242.
    A. F. Ismail, T.D. Kusworo and A. Mustafa, J. Membr. Sci., 319, 306 (2008).Google Scholar
  243. 243.
    S. Basu, A. Cano-Odena and I. F. Vankelecom, J. Membr. Sci., 362, 478 (2010).Google Scholar
  244. 244.
    D. F. Li, T.-S. Chung, R. Wang and Y. Liu, J. Membr. Sci., 198, 211 (2002).Google Scholar
  245. 245.
    D. Li, T.-S. Chung and R. Wang, J. Membr. Sci., 243, 155 (2004).Google Scholar
  246. 246.
    C. Ma and W. J. Koros, Ind. Eng. Chem. Res., 52, 10495 (2013).Google Scholar
  247. 247.
    T. T. Moore and W. J. Koros, J. Appl. Polym. Sci., 104, 4053 (2007).Google Scholar
  248. 248.
    H. Vinh-Thang and S. Kaliaguine, J. Membr. Sci., 452, 271 (2014).Google Scholar
  249. 249.
    E. A. Grulke, Polymer process engineering, Prentice Hall (1994).Google Scholar
  250. 250.
    P. Puri, Gas Sep. Purif., 4, 29 (1990).Google Scholar
  251. 251.
    C. Zhang and W. J. Koros, J. Phys. Chem. Lett., 6, 3841 (2015).Google Scholar
  252. 252.
    R. Mallada and M. Menéndez, Inorganic membranes: Synthesis, characterization and applications, Elsevier (2008).Google Scholar
  253. 253.
    S. S. Hosseini, N. Peng and T. S. Chung, J. Membr. Sci., 349, 156 (2010).Google Scholar
  254. 254.
    N. Widjojo, T. S. Chung and W.B. Krantz, J. Membr. Sci., 294, 132 (2007).Google Scholar
  255. 255.
    Y. Li, C. Cao, T.-S. Chung and K. P. Pramoda, J. Membr. Sci., 245, 53 (2004).Google Scholar
  256. 256.
    H.-K. Jeong, W. Krych, H. Ramanan, S. Nair, E. Marand and M. Tsapatsis, Chem. Mater., 16, 3838 (2004).Google Scholar
  257. 257.
    Z. Kang, Y. Peng, Y. Qian, D. Yuan, M. A. Addicoat, T. Heine, Z. Hu, L. Tee, Z. Guo and D. Zhao, Chem. Mater., 28, 1277 (2016).Google Scholar
  258. 258.
    T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F. X. L. I. Xamena and J. Gascon, Nat. Mater., 14, 48 (2015).Google Scholar
  259. 259.
    Z. Kang, Y. Peng, Z. Hu, Y. Qian, C. Chi, L.Y. Yeo, L. Tee and D. Zhao, J. Mater. Chem. A, 3, 20801 (2015).Google Scholar
  260. 260.
    X. Li, Y. Cheng, H. Zhang, S. Wang, Z. Jiang, R. Guo and H. Wu, ACS Appl. Mater. Interfaces, 7, 5528 (2015).Google Scholar
  261. 261.
    J. Shen, G. Liu, K. Huang, W. Jin, K.R. Lee and N. Xu, Angew. Chem., 127, 588 (2015).Google Scholar
  262. 262.
    X. Li, L. Ma, H. Zhang, S. Wang, Z. Jiang, R. Guo, H. Wu, X. Cao, J. Yang and B. Wang, J. Membr. Sci., 479, 1 (2015).Google Scholar
  263. 263.
    G. Liu, W. Jin and N. Xu, Angew. Chem. Int. Ed., 55, 13384 (2016).Google Scholar
  264. 264.
    T. Li, Y. Pan, K.-V. Peinemann and Z. Lai, J. Membr. Sci., 425, 235 (2013).Google Scholar
  265. 265.
    C. Rubio, B. Zornoza, P. Gorgojo, C. Tellez and J. Coronas, Curr. Org. Chem., 18, 2351 (2014).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.Artie McFerrin Department of Chemical EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of Materials Science and EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations