Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 8, pp 1748–1755 | Cite as

Polypropylene surface with antibacterial property by photografting 1-vinylimidazole and subsequent chemical modification

  • Choon Ki Na
  • Ga-Yeon Park
  • Hyunju Park
Polymer, Industrial Chemistry
  • 42 Downloads

Abstract

The surface of polypropylene (PP) fiber was modified by UV-induced graft polymerization of 1-vinylimidazole (Vim), followed by quaternization with iodomethane, sulfonation with chlorosulfonic acid, or loading of silver (Ag) nanoparticles to endow the surface with antibacterial properties. The modified PP fibers were characterized by FT-IR, SEM, and surface charge analyses. The antibacterial activity of the modified PP fibers was assessed against the Gram-negative and Gram-positive bacteria, Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus), respectively. The PP-g-Vim was greatly improved by loading of Ag nanoparticles (≥99.9%), quaternization (98.9–99.2%), or sulfonation (≥99.9%).

Keywords

Polypropylene Photopolymerization Modification Surfaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.W. Costerton, P. S. Stewart and E.P. Greenberg, Science, 284, 1318 (1999).CrossRefGoogle Scholar
  2. 2.
    Y. Wang, T. Wang, Y. Su, F. Peng, H. Wu and Z. Jiang, Langmuir, 21, 11856 (2005).CrossRefPubMedGoogle Scholar
  3. 3.
    Y. Chiag, Y. Chang, W. Chen and R. Ruaan, Langmuir, 28, 1399, (2012).CrossRefPubMedGoogle Scholar
  4. 4.
    C.X. Liu, D.R. Zhang, Y. He, X. S. Zhao and R. Bai, J. Membr. Sci., 346, 121 (2010).CrossRefGoogle Scholar
  5. 5.
    X. Ping, M. Wang and X. Ge, Radiat. Phys. Chem., 80, 567 (2011).CrossRefGoogle Scholar
  6. 6.
    Y. Wattanodorn, R. Jenkan, P. Atorngitjawat and S. Wirasate, Polym. Test., 40, 163 (2014).CrossRefGoogle Scholar
  7. 7.
    J. K. Pi, H. C. Yang, L. S. Wan, J. Wu and Z. K. Xu, J. Membr. Sci., 500, 8 (2016).CrossRefGoogle Scholar
  8. 8.
    G. Zhang, S. Lu, L. Zhang, Q. Meng, C. Shen and J. Zhang, J. Membr. Sci., 436, 163 (2013).CrossRefGoogle Scholar
  9. 9.
    L. Yan, Y. S. Li and C. B. Xiang, Polymer, 46, 7701 (2005).CrossRefGoogle Scholar
  10. 10.
    C. Yao, X. S. Li, K. G. Neoh, Z. L. Shi and E.T. Kang, J. Membr. Sci., 320, 259 (2008).CrossRefGoogle Scholar
  11. 11.
    Y. F. Yang, H.Q. Hu, Y. Li, L. S. Wan and Z. K. Xu, J. Membr. Sci., 376, 132 (2011).CrossRefGoogle Scholar
  12. 12.
    Q. Gu and Z. Jia, React. Funct. Polym., 73, 1114 (2013).CrossRefGoogle Scholar
  13. 13.
    Y. F. Yang, Y. Li, Q. L. Li, L. S. Wan and Z. K. Xu, J. Membr. Sci., 362, 255 (2010).CrossRefGoogle Scholar
  14. 14.
    R. Yang, H. Jang, R. Stocker and K. K. Gleason, Adv. Mater., 26, 1711 (2014).CrossRefPubMedGoogle Scholar
  15. 15.
    T. Xiang, C.D. Luo, R. Wang, Z.Y. Han, S.D. Sun and C. S. Zhao, J. Membr. Sci., 476, 234 (2015).CrossRefGoogle Scholar
  16. 16.
    Y. Mei, C. Yao, K. Fan and X. Li, J. Membr. Sci., 417, 20 (2012).CrossRefGoogle Scholar
  17. 17.
    Z.X. Zhou, D. F. Wei, Y. Guan, A. N. Zheng and J. J. Zhong, J. Appl. Microbiol., 108, 898 (2010).CrossRefPubMedGoogle Scholar
  18. 18.
    M. Adib, M. Mahdavi, M. A. Noghani and P. Mirzaei, Tetrahedron Lett., 48, 7263 (2007).CrossRefGoogle Scholar
  19. 19.
    E.B. Anderson and T. E. Long, Polymer, 51, 2447 (2010).CrossRefGoogle Scholar
  20. 20.
    C. Hamit, Y. Elvan and Y. Osman, Carbohydr. Polym., 69, 318 (2007).CrossRefGoogle Scholar
  21. 21.
    M.W. Sabaa, N. A. Mohamed, R.R. Mohamed, N. M. Khalil and S. M. A. E. Latif, Carbohydr. Polym., 79, 998 (2010).CrossRefGoogle Scholar
  22. 22.
    B. Gupta, N. Anjum, S. K. H. Gulrez and H. Singh, J. Appl. Polym. Sci., 103, 3534 (2007).CrossRefGoogle Scholar
  23. 23.
    P. Kleyil, V. Jacobs, C. K. Na, C. L. Frost, Z.R. Tshentu and N. Torto, Int. J. Polym. Mater. Polym. Biom., 64, 287 (2015).CrossRefGoogle Scholar
  24. 24.
    I. Melendez-Ortiz, H.C. Alvarez-Lorenzo, A. Concheiro, V. M. Jimeenez-Paaez and E. Bucio, Radiat. Phys. and Chem., 119, 37 (2016).CrossRefGoogle Scholar
  25. 25.
    C.K. Na and H. J. Park, Appl. Polym., 116, 2723 (2010).Google Scholar
  26. 26.
    J.A. Schwarz, C.T. Driscoll and A.K. Bhanot, J. Colloid Interface Sci., 24, 55 (1997).Google Scholar
  27. 27.
    H. Ma, R. H. Davis and C. N. Bowman, Polymer, 42, 8333 (2001).CrossRefGoogle Scholar
  28. 28.
    M. Takafuji, S. Ide, H. Ihara and Z. Xu, Chem. Mater., 16, 1977 (2004).CrossRefGoogle Scholar
  29. 29.
    H. El-Hamshary, M.M.G. Fouda, M. Moydeena, M.H. El-Newehy, S. S. Al-Deyab and A. Abdel-Megeed, Int. J. Biol. Macromol., 72, 1466 (2015).CrossRefPubMedGoogle Scholar
  30. 30.
    D.O. Hummel and F. Scholl, Atlas of Polymer and Plastic Analysis, Hanser, Munich, 2nd Ed. (1990).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.Department of Environmental EngineeringMokpo National UniversityJeonnamKorea
  2. 2.Institute of Construction and Environmental EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations