Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Interpreting the pH-dependent mechanism of simazine sorption to Miscanthus biochar produced at different pyrolysis temperatures for its application to soil

  • 82 Accesses

  • 2 Citations

Abstract

Biochar has received considerable attention as an eco-friendly bio-sorbent; however, multifarious characteristics caused by pyrolysis and feedstock pose difficulties in its application. We characterized the pH-dependent sorption of the pesticide simazine on Miscanthus biochar produced at two pyrolysis temperatures (400 and 700 °C; hereafter B-400 and B-700). The specific surface-area (SSA) of the micro- and nanopores, elemental composition, surface acidity and infrared spectra were determined. The SSA was greater in B-700 than in B-400, and the former had greater SSA in micro-pores and lower SSA in nanopores than the latter. During pyrolysis, the single-bond structures of the feedstock were converted to aromatic structures, and further pyrolysis led to ligneous structures. Alterations in pore structure and concave-up Scatchard plot corroborated the presence of two sorption mechanisms: electrostatic attractions (Ses) and hydrophobic attractions (Shp). Decreases in maximum sorption in the qmax-L with increasing pH was due to decreased Ses via deprotonation of carboxylic groups on biochar, while those in the qmax-H with increasing pyrolysis temperature were due to decreased Shp, resulting from pore structure deformation. We believe that our approach, which addresses the pH-dependence of charge density of sorbate and sorbent, could contribute to a better understanding of the behavior of simazine.

References

  1. 1.

    J. Lehmann, Nature, 447, 143 (2007).

  2. 2.

    C. J. Atkinson, J. D. Fitzgerald and N. A. Hipps, Plant Soil., 337, 1 (2010).

  3. 3.

    L. Van Zwieten, S. Kimber, S. Morris, K. Y. Chan, A. Downie, J. Rust, S. Joseph and A. Cowie, Plant Soil., 327, 235 (2010).

  4. 4.

    F. Li, K. Shen, X. Long, J. Wen, X. Xie, X. Zeng, Y. Liang, Y. Wei, Z. Lin, W. Huang and R. Zhong, PLoS One, 11, 7 (2016).

  5. 5.

    S. Kloss, F. Zehetner, E. Oburger, J. Buecker, B. Kitzler, W. W. Wenzel, B. Wimmer and G. Soja, Sci. Total Environ., 481, 498 (2014).

  6. 6.

    G. Xu, Y. Zhang, J. Sun and H. Shao, Sci. Total Environ., 568, 910 (2016).

  7. 7.

    S. Kloss, F. Zehetner, A. Dellantonio, R. Hamid, F. Ottner, V. Liedtke, M. Schwanninger, M. H. Gerzabek and G. Soja, J. Environ. Qual., 41, 990 (2012).

  8. 8.

    L. Zhao, X. Cao, O. Mašek and A. Zimmerman, J. Hazard. Mater., 256–257, 1 (2013).

  9. 9.

    A. Mukherjee, A. R. Zimmerman and W. Harris, Geoderma., 163, 247 (2011).

  10. 10.

    B. Chen, D. Zhou and L. Zhu, Environ. Sci. Technol., 42, 5137 (2008).

  11. 11.

    T. Mimmo, P. Panzacchi, M. Baratieri, C. A. Davies and G. Tonon, Biomass Bioenergy, 62, 149 (2014).

  12. 12.

    D. H. Lee and D. T. Liang, Energy Fuels, 20, 388 (2006).

  13. 13.

    J. Lehmann, Front. Ecol. Environ., 5, 381 (2007).

  14. 14.

    G. Zhang, Q. Zhang, K. Sun, X. Liu, W. Zheng and Y. Zhao, Environ. Pollut., 159, 2594 (2011).

  15. 15.

    W. Song and M. Guo, J. Anal. Appl. Pyrolysis., 94, 138 (2012).

  16. 16.

    A. Budai, L. Wang, M. Gronli, L. T. Strand, M. J. Antal, S. Abiven, A. Dieguez-alonso, A. Anca-couce and D. P. Rasse, J. Agric. Food Chem., 62, 3791 (2014).

  17. 17.

    L. Han, L. Qian, J. Yan and M. Chen, Chemosphere, 156, 262 (2016).

  18. 18.

    X. Cao, L. Ma, B. Gao and W. Harris, Environ. Sci. Technol., 43, 3285 (2009).

  19. 19.

    L. Qian and B. Chen, Environ. Sci. Technol., 47, 8759 (2013).

  20. 20.

    M. Uchimiya, S. Chang and K. T. Klasson, J. Hazard. Mater., 190, 432 (2011).

  21. 21.

    Y. Xu and B. Chen, J. Soils Sediments, 15, 60 (2015).

  22. 22.

    P. Oleszczuk, S. E. Hale, J. Lehmann and G. Cornelissen, Bioresour. Technol., 111, 84 (2012).

  23. 23.

    M. Ahmad, S. S. Lee, X. Dou, D. Mohan, J. K. Sung, J. E. Yang and Y. S. Ok, Bioresour. Technol., 118, 536 (2012).

  24. 24.

    L. Zhao, X. Cao, W. Zheng, Q. Wang and F. Yang, Chemosphere, 136, 133 (2015).

  25. 25.

    M. Jia, F. Wang, Y. Bian, X. Jin, Y. Song, F. O. Kengara, R. Xu and X. Jiang, Bioresour. Technol., 136, 87 (2013).

  26. 26.

    M. Uchimiya, I. M. Lima, K. Thomas Klasson, S. Chang, L. H. Wartelle and J. E. Rodgers, J. Agric. Food Chem., 58, 5538 (2010).

  27. 27.

    J. Wang, F. Wang, J. Yao, H. Guo, R. E. Blake, M. M. F. Choi and C. Song, Anal. Lett., 46, 379 (2013).

  28. 28.

    Q. Fang, B. Chen, Y. Lin and Y. Guan, Environ. Sci. Technol., 48, 279 (2014).

  29. 29.

    C. Leon and L. R. Radovic, Abstr. Pap. Am. Chem. Soc., 202, 1007 (1991).

  30. 30.

    C. Flores, V. Morgante, M. González, R. Navia and M. Seeger, Chemosphere, 74, 1544 (2009).

  31. 31.

    M. Silva and P. Iyer, Birth Defects Res. B. Dev. Reprod. Toxicol., 101, 308 (2014).

  32. 32.

    D. M. Whitacre, Rev. Environ. Contam. Toxical., 202, 1 (2010).

  33. 33.

    R. Celis, J. Cornejo, M. C. Hermosín and W. C. Koskinen, Soil Sci. Soc. Am. J., 61, 436 (1997).

  34. 34.

    J. B. Weber, Soil Sci. Soc. Am. J., 34, 401 (1970).

  35. 35.

    Y. Yang, Y. Chun, G. Sheng and M. Huang, Langmuir, 20, 6736 (2004).

  36. 36.

    A. R. Betts, N. Chen, J. G. Hamilton and D. Peak, Environ. Sci. Technol., 47, 14350 (2013).

  37. 37.

    S. Fang, D. C. W. Tsang, F. Zhou, W. Zhang and R. Qiu, Chemosphere, 149, 263 (2016).

  38. 38.

    D. T. Grubb, J. Mater. Sci., 9, 1715 (1974).

  39. 39.

    H. Liu and W. Chen, RSC Adv., 5, 27034 (2015).

  40. 40.

    W. Zheng, M. Guo, T. Chow, D. N. Bennett and N. Rajagopalan, J. Hazard. Mater., 181, 121 (2010).

  41. 41.

    G. Sigmund, T. Hüffer, T. Hofmann and M. Kah, Sci. Total Environ., 580, 770 (2017).

  42. 42.

    H. P. Boehm, Carbon N. Y., 32, 759 (1994).

  43. 43.

    R. B. Fidel, D. A. Laird and M. L. Thompson, J. Environ. Qual., 42, 1771 (2013).

  44. 44.

    A. Contescu, C. Contescu, K. Putyera and J. A. Schwarz, Carbon N. Y., 35, 83 (1997).

  45. 45.

    X. Cao and W. Harris, Bioresour. Technol., 101, 5222 (2010).

  46. 46.

    M. Stefaniuk and P. Oleszczuk, J. Anal. Appl. Pyrolysis., 115, 157 (2015).

  47. 47.

    A. S. Gunasekara, J. Troiano, K. S. Goh and R. S. Tjeerdema, Rev. Environ. Contam. Toxicol., 189, 1 (2007).

  48. 48.

    V. Morgante, C. Flores, X. Fadic, M. González, M. Hernández, F. Cereceda-Balic and M. Seeger, J. Environ. Manage., 95, S300 (2012).

  49. 49.

    P. A. Bersanetti, R. M. R. G. Almeida, M. Barboza, M. L. G. C. Araújo and C. O. Hokka, Biochem. Eng. J., 23, 31 (2005).

  50. 50.

    K. Foo and B. Hameed, Pet. Coal., 56, 552 (2014).

  51. 51.

    A. Dąbrowski, Adv. Colloid Interface Sci., 93, 135 (2001).

  52. 52.

    L. Mihaly Cozmuta, A. Mihaly Cozmuta, A. Peter, C. Nicula, E. Bakatula Nsimba and H. Tutu, Water SA., 38, 269 (2012).

  53. 53.

    E. Pehlivan, B. H. Yanik, G. Ahmetli and M. Pehlivan, Bioresour. Technol., 99, 3520 (2008).

  54. 54.

    O. Gezici, H. Kara, M. Ersöz and Y. Abali, J. Colloid Interface Sci., 292, 381 (2005).

  55. 55.

    O. Gezici, H. Kara, S. Yanik, H. F. Ayyildiz and S. Kucukkolbasi, Colloids Surf., A., 298, 129 (2007).

  56. 56.

    W. K. Kim, T. Shim, Y. S. Kim, S. Hyun, C. Ryu, Y. K. Park and J. Jung, Bioresour. Technol., 138, 266 (2013).

  57. 57.

    L. Luo, C. Xu, Z. Chen and S. Zhang, Bioresour. Technol., 192, 83 (2015).

  58. 58.

    B. Chen and Z. Chen, Chemosphere, 76, 127 (2009).

  59. 59.

    Z. Chen, B. Chen and C. T. Chiou, Environ. Sci. Technol., 46, 11104 (2012).

  60. 60.

    M. Keiluweit, P. S. Nico, M. Johnson and M. Kleber, Environ. Sci. Technol., 44, 1247 (2010).

  61. 61.

    P. A. Trazzi, J. J. Leahy, M. H. B. Hayes and W. Kwapinski, J. Environ. Chem. Eng., 4, 37 (2016).

  62. 62.

    M. I. Al-Wabel, A. Al-Omran, A. H. El-Naggar, M. Nadeem and A. R. A. Usman, Bioresour. Technol., 131, 374 (2013).

  63. 63.

    A. Silber, Levkovitch and E. R. Graber, Environ. Sci. Technol., 44, 9318 (2010).

  64. 64.

    Y. Chun, G. Sheng, G. T. Chiou and B. Xing, Environ. Sci. Technol., 38, 4649 (2004).

  65. 65.

    X. Xiao, B. Chen and L. Zhu, Environ. Sci. Technol., 48, 3411 (2014).

  66. 66.

    W. Ding, X. Dong, I. M. Ime, B. Gao and L. Q. Ma, Chemosphere, 105, 68 (2014).

  67. 67.

    L. Clausen, I. Fabricius and L. Madsen, J. Environ. Qual., 30, 846 (2001).

  68. 68.

    A. Rahman and P. T. Holland, New Zeal. J. Exp. Agric., 13, 59 (1985).

  69. 69.

    D. E. Armstrong, G. Chesters and R. F. Harris, Soil Sci. Soc. Am. J., 31, 61 (1967).

  70. 70.

    N. Burkhard and J. A Guth, Pestic. Sci., 12, 45 (1981).

  71. 71.

    M. S. Samuel, M. E. A. Abigail and C. Ramalingam, PLOS ONE, 10, 1 (2015).

  72. 72.

    A. U. Rajapaksha, M. Vithanage, M. Ahmad, D. C. Seo, J. S. Cho, S. E. Lee, S. S. Lee and Y. S. Ok, J. Hazard. Mater., 290, 43 (2015).

  73. 73.

    L. P. Lingamdinne, H. Roh, Y. L. Choi, J. R. Koduru, J. K. Yang and Y. Y. Chang, J. Ind. Eng. Chem., 32, 178 (2015).

  74. 74.

    Z. Chen, B. Chen, D. Zhou and W. Chen, Environ. Sci. Technol., 46, 12476 (2012).

  75. 75.

    L. Ping, Y. Zhuoxin, L. Jianfeng, J. Qiang, D. Yaofang, F. Qiaohui and W. Wangsuo, Environ. Sci. Process. Impacts, 16, 2278 (2014).

  76. 76.

    D. Zhu, S. Hyun, J. J. Pignatello and L. S. Lee, Environ. Sci. Technol., 38, 4361 (2004).

  77. 77.

    C. M. Park, J. Han, K. H. Chu, Y. A. J. Al-Hamadani, N. Her, J. Heo and Y. Yoon, J. Ind. Eng. Chem., 48, 186 (2017).

  78. 78.

    Z. Xu, D. Kuang, L. Liu and Q. Deng, J. Pharm. Biomed. Anal., 45, 54 (2007).

  79. 79.

    A. A. Krichko and S. G. Gagarin, Fuel, 69, 885 (1990).

  80. 80.

    T. D. Gauthier, W. R. Seitz and C. L. Grant, Environ. Sci. Technol., 21, 243 (1987).

  81. 81.

    Y. Qiu, Z. Zheng, Z. Zhou and G. D. Sheng, Bioresour. Technol., 100, 5348 (2009).

  82. 82.

    F. Lian, F. Huang, W. Chen, B. Xing and L. Zhu, Environ. Pollut., 159, 850 (2011).

Download references

Author information

Correspondence to Hee-Myong Ro.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Han, J. & Ro, H. Interpreting the pH-dependent mechanism of simazine sorption to Miscanthus biochar produced at different pyrolysis temperatures for its application to soil. Korean J. Chem. Eng. 35, 1468–1476 (2018). https://doi.org/10.1007/s11814-018-0054-4

Download citation

Keywords

  • Simazine
  • Miscanthus Biochar
  • Pyrolysis Temperature
  • pH-dependent Sorption
  • Scatchard Plot