Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 6, pp 1319–1327 | Cite as

A hydrogel-coated membrane for highly efficient separation of microalgal bio-lipid

  • Jihye Shin
  • Hogi Kim
  • Heeyeon Moon
  • Moo Jin Kwak
  • Seula Oh
  • Youngmin Yoo
  • Eunjung Lee
  • Yong Keun Chang
  • Sung Gap Im
Separation Technology, Thermodynamics
  • 53 Downloads

Abstract

A cross-linked hydrogel-coated membrane was fabricated to achieve simple but highly efficient separation of bio-lipids directly from an aqueous microalgal culture medium. The membrane is composed of a stainless steel membrane coated conformally with a cross-linked hydrogel, poly(2-hydroxyethyl methacrylate) (pHEMA), synthesized by a photo-initiated chemical vapor deposition (piCVD) process. The pHEMA-coated membrane has hydrophilicity and underwater-oleophobicity for efficient separation of a bio-lipid-in-hexane/water mixture by gravity. The conformal pHEMA film-coated membrane enables extremely high oil rejection performance with intrusion pressure of 6.1 kPa and water permeation flux of 6.5×103 L m-2 h-1, with excellent separation efficiency greater than 98.0%.

Keywords

Membrane Hydrophilic Underwater-oleophobic Cross-linked Hydrogel Bio-lipid Separation Photo-initiated Chemical Vapor Deposition (piCVD) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2018_39_MOESM1_ESM.wmv (3.8 mb)
Supplementary material, approximately 3.75 MB.
11814_2018_39_MOESM2_ESM.wmv (4.7 mb)
Supplementary material, approximately 4.71 MB.
11814_2018_39_MOESM3_ESM.pdf (227 kb)
A Hydrogel-coated membrane for highly efficient separation of microalgal bio-lipid

References

  1. 1.
    H. Lund, Energy, 32, 912 (2007).CrossRefGoogle Scholar
  2. 2.
    M. Dresselhaus and I. Thomas, Nature, 414, 332 (2001).CrossRefGoogle Scholar
  3. 3.
    L. Lin, C. S. Zhou, S. Vittayapadung, X. Q. Shen and M. D. Dong, Appl. Energy, 88, 1020 (2011).CrossRefGoogle Scholar
  4. 4.
    Y. C. Sharma and B. Singh, Renew. Sust. Energ. Rev., 13, 1646 (2009).CrossRefGoogle Scholar
  5. 5.
    A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. Mahlia, H. Masjuki and S. Mekhilef, Renew. Sust. Energ. Rev., 16, 2070 (2012).CrossRefGoogle Scholar
  6. 6.
    A. L. Ahmad, N. H. M. Yasin, C. J. C. Derek and J. K. Lim, Renew. Sust. Energ. Rev., 15, 584 (2011).CrossRefGoogle Scholar
  7. 7.
    I. Rawat, R. R. Kumar, T. Mutanda and F. Bux, Appl. Energy, 103, 444 (2013).CrossRefGoogle Scholar
  8. 8.
    Y. Chisti, Biotechnol. Adv., 25, 294 (2007).CrossRefGoogle Scholar
  9. 9.
    S. Wu, L.R. Song, M. Sommerfeld, Q. Hu and W. Chen, Fuel, 197, 467 (2017).CrossRefGoogle Scholar
  10. 10.
    L. Lardon, A. Helias, B. Sialve, J. P. Steyer and O. Bernard, Environ. Sci. Technol., 43, 6475 (2009).CrossRefGoogle Scholar
  11. 11.
    N. Uduman, Y. Qi, M. K. Danquah, G. M. Forde and A. Hoadley, J. Renew. Sustain. Ener., 2(1), 012701 (2010).CrossRefGoogle Scholar
  12. 12.
    M. Rizwan, J. H. Lee and R. Gani, Appl. Energy, 150, 69 (2015).CrossRefGoogle Scholar
  13. 13.
    S. Y. Choy, Algal Res. (2017), DOI:10.1016/j.algal.2017.1011.1012.Google Scholar
  14. 14.
    H. Taher, S. Al-Zuhair, A. H. Al-Marzouqi, Y. Haik and M. Farid, Biomass Bioenergy, 66, 159 (2014).CrossRefGoogle Scholar
  15. 15.
    G. Yoo, W.-K. Park, C.W. Kim, Y.-E. Choi and J.-W. Yang, Bioresour. Technol., 123, 717 (2012).CrossRefGoogle Scholar
  16. 16.
    W. M. A. W. Mahmood, C. Theodoropoulos and M. Gonzalez-Miquel, Green Chem., 19, 5723 (2017).CrossRefGoogle Scholar
  17. 17.
    A. Silve, I. Papachristou, R. Wüstner, R. Sträβner, M. Schirmer, K. Leber, B. Guo, L. Interrante, C. Posten and W. Frey, Algal Res., 29, 212 (2018).CrossRefGoogle Scholar
  18. 18.
    Z. Xue, Y. Cao, N. Liu, L. Feng and L. Jiang, J. Mater. Chem. A, 2, 2445 (2014).CrossRefGoogle Scholar
  19. 19.
    M. Padaki, R. S. Murali, M. S. Abdullah, N. Misdan, A. Moslehyani, M. A. Kassim, N. Hilal and A. F. Ismail, Desalination, 357, 197 (2015).CrossRefGoogle Scholar
  20. 20.
    Z. X. Xue, S.T. Wang, L. Lin, L. Chen, M. J. Liu, L. Feng and L. Jiang, Adv. Mater., 23, 4270 (2011).CrossRefGoogle Scholar
  21. 21.
    K. Rohrbach, Y. Li, H. Zhu, Z. Liu, J. Dai, J. Andreasen and L. Hu, Chem. Commun. (Camb), 50, 13296 (2014).CrossRefGoogle Scholar
  22. 22.
    M. W. Lee, S. An, S. S. Latthe, C. Lee, S. Hong and S. S. Yoon, ACS Appl. Mater. Inter., 5, 10597 (2013).CrossRefGoogle Scholar
  23. 23.
    J. Li, L. Yan, H. Li, J. Li, F. Zha and Z. Lei, RSC Adv., 5, 53802 (2015).CrossRefGoogle Scholar
  24. 24.
    M. J. Kwak, Y. Yoo, H. S. Lee, J. Kim, J. W. Yang, J. I. Han, S. G. Im and J. H. Kwon, ACS Appl. Mater. Inter., 8, 600 (2016).CrossRefGoogle Scholar
  25. 25.
    F. Smedes, Analyst, 124, 1711 (1999).CrossRefGoogle Scholar
  26. 26.
    M. D. Antezana Zbinden, B. S. M. Sturm, R. D. Nord, W. J. Carey, D. Moore, H. Shinogle and S. M. Stagg-Williams, Biotechnol. Bioeng., 110, 1605 (2013).CrossRefGoogle Scholar
  27. 27.
    R. Halim, B. Gladman, M. K. Danquah and P. A. Webley, Bioresour. Technol., 102, 178 (2011).CrossRefGoogle Scholar
  28. 28.
    Q. L. Ma, H. F. Cheng, A. G. Fane, R. Wang and H. Zhang, Small, 12, 2186 (2016).CrossRefGoogle Scholar
  29. 29.
    W. Zhang, Y. Cao, N. Liu, Y. Chen and L. Feng, RSC Adv., 4, 51404 (2014).CrossRefGoogle Scholar
  30. 30.
    Z.-Y. Luo, K.-X. Chen, Y.-Q. Wang, J.-H. Wang, D.-C. Mo and S.-S. Lyu, J. Phys. Chem. C, 120, 12685 (2016).CrossRefGoogle Scholar
  31. 31.
    G. Wang, Y. He, H. Wang, L. Zhang, Q. Yu, S. Peng, X. Wu, T. Ren, Z. Zeng and Q. Xue, Green Chem., 17, 3093 (2015).CrossRefGoogle Scholar
  32. 32.
    F. Zhang, W. B. Zhang, Z. Shi, D. Wang, J. Jin and L. Jiang, Adv. Mater., 25, 4192 (2013).CrossRefGoogle Scholar
  33. 33.
    M. Sun, Q.Y. Wu, J. Xu, F. He, A. P. Brown and Y. M. Ye, J. Mater. Chem. B, 4, 2669 (2016).CrossRefGoogle Scholar
  34. 34.
    M. Joo, J. Shin, J. Kim, J. B. You, Y. Yoo, M. J. Kwak, M. S. Oh and S. G. Im, J. Am. Chem. Soc., 139, 2329 (2017).CrossRefGoogle Scholar
  35. 35.
    S. H. Baxamusa, L. Montero, J. M. Dubach, H. A. Clark, S. Borros and K. K. Gleason, Biomacromolecules, 9, 2857 (2008).CrossRefGoogle Scholar
  36. 36.
    J. B. You, Y. Yoo, M. S. Oh and S.G. Im, ACS Appl. Mater. Inter., 6, 4005 (2014).CrossRefGoogle Scholar
  37. 37.
    M. J. Kwak, M. S. Oh, Y. Yoo, J. B. You, J. Kim, S. J. Yu and S.G. Im, Chem. Mater., 27, 3441 (2015).CrossRefGoogle Scholar
  38. 38.
    B. J. Kim, D. Han, S. Yoo and S. G. Im, Korean J. Chem. Eng., 34, 892 (2017).CrossRefGoogle Scholar
  39. 39.
    F. Zhang, W. B. Zhang, Z. Shi, D. Wang, J. Jin and L. Jiang, Adv. Mater., 25, 4192 (2013).CrossRefGoogle Scholar
  40. 40.
    X. Zhao, Y. Su, Y. Liu, Y. Li and Z. Jiang, ACS Appl. Mater. Inter., 8, 8247 (2016).CrossRefGoogle Scholar
  41. 41.
    L. Liu, C. Chen, S. Yang, H. Xie, M. Gong and X. Xu, Phys. Chem. Chem. Phys., 18, 1317 (2016).CrossRefGoogle Scholar
  42. 42.
    A. Gallina, N. Stocco and F. Mutinelli, Food Control, 21, 942 (2010).CrossRefGoogle Scholar
  43. 43.
    E. Abrahamson, J. Littler and K. P. Vo, J. Chem. Phys., 44, 4082 (1966).CrossRefGoogle Scholar
  44. 44.
    K. Chan and K. K. Gleason, Langmuir, 21, 8930 (2005).CrossRefGoogle Scholar
  45. 45.
    G. M. Jeong, H. Seong, Y. S. Kim, S. G. Im and K. J. Jeong, Polym. Chem., 5, 4459 (2014).CrossRefGoogle Scholar
  46. 46.
    X. Zheng, Z. Guo, D. Tian, X. Zhang, W. Li and L. Jiang, ACS Appl. Mater. Inter., 7, 4336 (2015).CrossRefGoogle Scholar
  47. 47.
    P. C. Chen and Z. K. Xu, Sci. Rep., 3, 2776 (2013).CrossRefGoogle Scholar
  48. 48.
    J. Lee, T. Aoai, S. i. Kondo, N. Miyagawa, S. Takahara and T. Yamaoka, J. Polym. Sci., Part A: Polym. Chem., 40, 1858 (2002).CrossRefGoogle Scholar
  49. 49.
    M. Vasilopoulou, S. Boyatzis, I. Raptis, D. Dimotikalli and P. Argitis, J. Mater. Chem., 14, 3312 (2004).CrossRefGoogle Scholar
  50. 50.
    K. K. S. Lau and K. K. Gleason, Macromolecules, 39, 3688 (2006).CrossRefGoogle Scholar
  51. 51.
    S. Lee, H. Seong, S. G. Im, H. Moon and S. Yoo, Nat. Commun., 8, 725 (2017).CrossRefGoogle Scholar
  52. 52.
    Y. I. Lee, N. J. Jeon, B. J. Kim, H. Shim, T. Y. Yang, S. I. Seok, J. Seo and S. G. Im, Adv. Energy Mater., 1701928 (Online Version) (2017).Google Scholar
  53. 53.
    R. Bakker, V. Verlaan, C. Van der Werf, J. Rath, K. Gleason and R. Schropp, Surf. Coat. Technol., 201, 9422 (2007).CrossRefGoogle Scholar
  54. 54.
    P. H. Corkhill, A. M. Jolly, C. O. Ng and B. J. Tighe, Polymer, 28, 1758 (1987).CrossRefGoogle Scholar
  55. 55.
    M. Tao, L. Xue, F. Liu and L. Jiang, Adv. Mater., 26, 2943 (2014).CrossRefGoogle Scholar
  56. 56.
    S. J. Gao, Z. Shi, W. B. Zhang, F. Zhang and J. Lin, ACS Nano, 8, 6344 (2014).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Jihye Shin
    • 1
  • Hogi Kim
    • 1
  • Heeyeon Moon
    • 1
  • Moo Jin Kwak
    • 1
  • Seula Oh
    • 1
  • Youngmin Yoo
    • 1
  • Eunjung Lee
    • 1
  • Yong Keun Chang
    • 1
    • 2
  • Sung Gap Im
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringKAISTDaejeonKorea
  2. 2.Advanced Biomass R&D CenterDaejeonKorea

Personalised recommendations