Korean Journal of Chemical Engineering

, Volume 35, Issue 4, pp 1009–1018 | Cite as

Change of band-gap position of MTiO2 particle doped with 3d-transition metal and control of product selectivity on carbon dioxide photoreduction

  • Jeong Yeon Do
  • Junyeong Kim
  • Yeju Jang
  • Youn-Kyoung Baek
  • Misook Kang
Materials (Organic, Inorganic, Electronic, Thin Films)
  • 50 Downloads

Abstract

This study attempted to obtain various products from carbon dioxide photoreduction using TiO2 catalysts doped with different transition metals of Mn, Fe, Co, Ni, Cu, and Zn (MTiO2). The band-gaps of MTiO2 catalysts decreased compared to pure TiO2, except for ZnTiO2. The intensities in photoluminescence curves, which can predict the recombination of excited electrons and holes, were weaker in MTiO2 catalysts than that of pure TiO2. The products obtained from carbon dioxide photoreduction were strongly related to the redox potential of carbon dioxide and the locations of band-gaps of MTiO2 catalysts. Methane was predominantly obtained in pure TiO2, FeTiO2, and NiTiO2 catalysts, and methanol and carbon monoxide were selectively produced in the CuTiO2 and ZnTiO2 catalysts, respectively. This result suggests that the desired product from carbon dioxide photoreduction can be selectively synthesized by doping certain metals.

Keywords

MTiO2 3d-Transition Metal Carbon Dioxide Photoreduction Methane Carbon Monoxide Methanol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Wilk, L. Więcław-Solny, A. Tatarczuk, A. Krótki, T. Spietz and T. Chwoła, Korean J. Chem. Eng., 34, 2275 (2017).CrossRefGoogle Scholar
  2. 2.
    Z. Cui, J. Fan, H. Duan, J. Zhang, Y. Xue and Y. Tan, Korean J. Chem. Eng., 34, 29 (2017).CrossRefGoogle Scholar
  3. 3.
    H. Huang, J. Lin, G. Zhu, Y. Weng, X. Wang, X. Fu and J. Long, Angew. Chem. Int. Ed., 55, 8314 (2016).CrossRefGoogle Scholar
  4. 4.
    S. Xie, Q. Zhang, G. Liu and Y. Wang, Chem. Commun., 52, 35 (2016).CrossRefGoogle Scholar
  5. 5.
    Z. He, L. Wen, D. Wang, Y. Xue, Q. Lu, C. Wu, J. Chen and S. Song, Energy Fuel, 3982, 28 (2014).Google Scholar
  6. 6.
    S. Nahar, M. F. M. Zain, A. A. H. Kadhum, H. A. Hasan and M. R. Hasan, Materials, 629, 10 (2017).Google Scholar
  7. 7.
    M. Zalfani, Z.-Y. Hud, W.-B. Yu, M. Mahdouani, R. Bourguiga, M. Wua, Y. Li, G. V. Tendeloo, Y. Djaoued and B.-L. Su, Appl. Catal. B: Environ., 205, 121 (2017).CrossRefGoogle Scholar
  8. 8.
    Y. Yang, T. Zhang, L. Le, X. Ruan, P. Fang, C. Pan, R. Xiong, J. Shi and J. Wei, Sci. Rep., 4, 7045 (2014).CrossRefGoogle Scholar
  9. 9.
    H. Zhao, F. Pan and Y. Li, J. Materiomics, 3, 17 (2017).CrossRefGoogle Scholar
  10. 10.
    Y. Im, J. H. Lee and M. Kang, Korean J. Chem. Eng., 34(6), 1669 (2017).CrossRefGoogle Scholar
  11. 11.
    M. Zhang, J. Wu, D. D. Lu and J. Yang, Int. J. Photoenergy, 2013, 1 (2013).Google Scholar
  12. 12.
    S. Ali Ansari, M. Mansoob Khan, M. Omaish Ansari and M. H. Cho, New J. Chem., 40, 3000 (2016).CrossRefGoogle Scholar
  13. 13.
    F. M. Pesci, G. Wang, D. R. Klug, Y. Li and A. J. Cowan, J. Phys. Chem. C, 117, 25837 (2013).CrossRefGoogle Scholar
  14. 14.
    K. Zhang and J. H. Park, J. Phys. Chem. Lett., 8, 199 (2017).CrossRefGoogle Scholar
  15. 15.
    J. H. Lee, H. Lee and M. Kang, Mater. Lett., 178, 316 (2016).CrossRefGoogle Scholar
  16. 16.
    M. Park, B. S. Kwak, S. W. Jo and M. Kang, Energy Conv. Manage., 103, 431 (2015).CrossRefGoogle Scholar
  17. 17.
    D. Dvoranová, V. Brezová, M. Mazúr and M. A. Malati, Appl. Catal. B: Environ., 37, 91 (2002).CrossRefGoogle Scholar
  18. 18.
    S. Sakthivel and H. Kisch, ChemPhysChem, 4, 487 (2003).CrossRefGoogle Scholar
  19. 19.
    K. Yang, Y. Dai, B. Huang and M.-H. Whang, J. Phys. Chem. C., 113, 2624 (2009).CrossRefGoogle Scholar
  20. 20.
    T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura, Appl. Catal. A: Gen., 265, 115 (2004).CrossRefGoogle Scholar
  21. 21.
    S. Protti, A. Albini and N. Serpone, Phys. Chem. Chem. Phys., 16, 19790 (2014).CrossRefGoogle Scholar
  22. 22.
    J. Low, J. Yu and W. Ho, J. Phys. Chem. Lett., 6, 4244 (2015).CrossRefGoogle Scholar
  23. 23.
    H. S. Kim, D. Kim, B. S. Kwak, G. B. Han, M.-H. Um and M. Kang, Chem. Eng. J., 243, 272 (2014).CrossRefGoogle Scholar
  24. 24.
    B. S. Kwak and M. Kang, Appl. Surf. Sci., 337, 138 (2015).CrossRefGoogle Scholar
  25. 25.
    J. Ge, Y. Ping, G. Liu, G. Qiao, E. J. Kim and M. Wang, Mater. Lett., 181, 216 (2016).CrossRefGoogle Scholar
  26. 26.
    A. W. Burton, K. Ong, T. Rea and I. Y. Chan, Micropor. Mesopor. Mater., 117, 75 (2009).CrossRefGoogle Scholar
  27. 27.
    G. O. Park, J. K. Shon, Y. H. Kim and J. M. Kim, J. Nanosci. Nanotechnol., 15, 2441 (2015).CrossRefGoogle Scholar
  28. 28.
    X. Deng and C. Matranga, J. Phys. Chem. C., 113, 11104 (2009).CrossRefGoogle Scholar
  29. 29.
    Z.-J. Jiang and Z. Jiang, Sci. Rep., 6, 27081 (2016).CrossRefGoogle Scholar
  30. 30.
    M. Muruganandham, R. P. S. Suri, M. Sillanpää, G.-J. Lee and J. J. Wu, Electron. Mater. Lett., 12, 693 (2016).CrossRefGoogle Scholar
  31. 31.
    F. Wu, S. Banerjee, H. Li, Y. Myung and P. Banerjee, Langmuir, 32, 4485 (2016).CrossRefGoogle Scholar
  32. 32.
    H. Tian, H. Fan, G. Dong, L. Ma and J. Ma, RSC Adv., 6, 109091 (2016).Google Scholar
  33. 33.
    J. Fang, F. Shi, J. Bu, J. Ding, S. Xu, J. Bao, Y. Ma, Z. Jiang, W. Zhang, C. Gao and W. Huang, J. Phys. Chem. C., 114, 7940 (2010).CrossRefGoogle Scholar
  34. 34.
    S. Benkoula, O. Sublemontier, M. Patanen, C. Nicolas, F. Sirotti, A. Naitabdi, F. Gaie-Levrel, E. Antonsson, D. Aureau, F.-X. Ouf, S.-I. Wada, A. Etcheberry, K. Ueda and C. Miron, Sci. Rep., 5, 15088 (2015).CrossRefGoogle Scholar
  35. 35.
    H. Sun, L. Biedermann and T. C. Bond, Geophys. Res. Lett., 34, 17813 (2007).CrossRefGoogle Scholar
  36. 36.
    J. Peña-Flores, A. F. Palomec-Garfias, C. Márquez-Beltrán, E. Sánchez-Mora, E. Gómez-Barojas and F. Pérez-Rodríguez, Nanoscale Res. Lett., 9, 499 (2014).CrossRefGoogle Scholar
  37. 37.
    J. Chae and M. Kang, J. Power Source, 196, 4143 (2011).CrossRefGoogle Scholar
  38. 38.
    R. da S. Santos, G. A. Faria, C. Giles, C. A. P. Leite, H. de S. Barbosa, M. A. Z. Arruda and C. Longo, Appl. Mater. Interf., 4, 5555 (2012).CrossRefGoogle Scholar
  39. 39.
    S. Ghasemi, S. Rahimnejad, S. Rahman Setayesh, S. Rohani and M. R. Gholami, J. Hazard. Mater., 172, 1573 (2009).CrossRefGoogle Scholar
  40. 40.
    Y. Hori, Modern Aspect Electrochem., 42, 89 (2008).CrossRefGoogle Scholar
  41. 41.
    J. Chen, L. Falivene, L. Caporaso, L. Cavallo and E. Y.-X. Chen, J. Am. Chem. Soc., 138, 5321 (2016).CrossRefGoogle Scholar
  42. 42.
    S. Saeidi, N. A. Saidina Amin and M. R. Rahimpour, J. CO 2 Utilization, 5, 66 (2014).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Jeong Yeon Do
    • 1
  • Junyeong Kim
    • 1
  • Yeju Jang
    • 1
  • Youn-Kyoung Baek
    • 2
  • Misook Kang
    • 1
  1. 1.Department of Chemistry, College of Natural SciencesYeungnam UniversityGyeongsan, GyeongbukKorea
  2. 2.Powder & Ceramics DivisionKorea Institute of Materials ScienceChangwonKorea

Personalised recommendations