Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 1, pp 89–98 | Cite as

Effects of copper loading on NH3-SCR and NO oxidation over Cu impregnated CHA zeolite

  • Nusnin Akter
  • Xianyin Chen
  • John Parise
  • Jorge Anibal Boscoboinik
  • Taejin Kim
Catalysis, Reaction Engineering

Abstract

Cu/CHA catalysts with various Cu loadings (0.5 wt%–6.0 wt%) were synthesized via incipient wetness impregnation. The catalysts were applied to the selective catalytic reduction (SCR) of NO with NH3 and NO oxidation reaction. XRD and N2 adsorption-desorption data showed that CHA structure was maintained with the incorporation of Cu, while specific surface areas decreased with increasing Cu loading. At intermediate Cu loading, 4 wt%, the highest NH3-SCR activity was observed with ∼98% N2 selectivity from 150 °C to 300 °C. Small amounts of water, 2%, slightly increased NO conversion in addition to the remarkable N2O and NO2 reduction at high temperature. Water effects are attributed to the improved Cu ion reducibility and mobility. NO oxidation results provided no relation between NO2 formation and SCR activity. Physicochemical properties, NO conversion, N2 selectivity, and activation energy data showed that impregnated samples’ molecular structure and catalytic activity are comparable to the conventional ion-exchanged (IE) samples’ ones.

Keywords

Chabazite Framework Zeolite Selective Catalytic Reduction (SCR) Copper Loading Incipient Wetness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2017_268_MOESM1_ESM.pdf (204 kb)
Effects of copper loading on NH3-SCR and NO oxidation over Cu impregnated CHA zeolite

References

  1. 1.
    M. Chiron, Stud. Surf. Sci. Catal., 30, 1 (1987).CrossRefGoogle Scholar
  2. 2.
    D. L. Mauzerall, B. Sultan, N. Kim and D. F. Bradford, Atmos. Environ., 39, 2851 (2005).CrossRefGoogle Scholar
  3. 3.
    P. J. Crutzen and C. Bruhl, J. Phys. Chem. A., 105, 1579 (2001).CrossRefGoogle Scholar
  4. 4.
    A. R. Ravishankara, Chem. Rev., 103, 4505 (2003).CrossRefGoogle Scholar
  5. 5.
    A. Fritz and V. Pitchon, Appl. Catal. B Environ., 13, 1 (1997).CrossRefGoogle Scholar
  6. 6.
    J. Li, H. Chang, L. Ma, J. Hao and R. T. Yang, Catal. Today, 175, 147 (2011).CrossRefGoogle Scholar
  7. 7.
    S. Roy, M. S. Hegde and G. Madras, Appl. Energy, 86, 2283 (2009).CrossRefGoogle Scholar
  8. 8.
    F. Gao, J. H. Kwak, J. Szanyi and C. H. F. Peden, Top. Catal., 56, 1441 (2013).CrossRefGoogle Scholar
  9. 9.
    J. Jansson, in Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts, in: I. Nova and E. Tronconi Eds., Springer Science and Business Media, New York (2014).Google Scholar
  10. 10.
    G. Busca, L. Lietti, G. Ramis and F. Berti, Appl. Catal. B Environ., 18, 1 (1998).CrossRefGoogle Scholar
  11. 11.
    R. Q. Long and R. T. Yang, J. Am. Chem. Soc., 121, 5595 (1999).CrossRefGoogle Scholar
  12. 12.
    K. Rahkamaa-Tolonen, T. Maunula, M. Lomma, M. Huuhtanen and R. L. Keiski, Catal. Today, 100, 217 (2005).CrossRefGoogle Scholar
  13. 13.
    J. H. Kwak, D. Tran, J. Szanyi, C. H. F. Peden and J. H. Lee, Catal. Lett., 142, 295 (2012).CrossRefGoogle Scholar
  14. 14.
    J. H. Kwak, D. Tran, S. D. Burton, J. Szanyi, J. H. Lee and C. H. F. Peden, J. Catal., 287, 203 (2012).CrossRefGoogle Scholar
  15. 15.
    F. Gao, E. D. Walter, E. M. Karp, J. Luo, R. G. Tonkyn and J. H. Kwak, J. Catal., 300, 20 (2013).CrossRefGoogle Scholar
  16. 16.
    D. Wang, L. Zhang, J. Li, K. Kamasamudram and W. S. Epling, Catal. Today, 231, 64 (2014).CrossRefGoogle Scholar
  17. 17.
    D. Wang, L. Zhang, K. Kamasamudram and W. S. Epling, ACS Catal., 3, 871 (2013).CrossRefGoogle Scholar
  18. 18.
    P. G. Blakeman, E. M. Burkholder, H. Y. Chen, J. E. Collier, J. M. Fedeyko and H. Jobson, Catal. Today, 231, 56 (2013).CrossRefGoogle Scholar
  19. 19.
    W. Kang, B. Choi and H. Kim, J. Ind. Eng. Chem., 19, 1406 (2013).CrossRefGoogle Scholar
  20. 20.
    J. Kim, A. Jentys, S. M. Maier and J. A. Lercher, J. Phys. Chem. C., 117, 986 (2013).CrossRefGoogle Scholar
  21. 21.
    P. S. Metkar, M. P. Harold and V. Balakotaiah, Chem. Eng. Sci., 87, 51 (2013).CrossRefGoogle Scholar
  22. 22.
    R. Nedyalkova, S. Shwan, M. Skoglundh and L. Olsson, Appl. Catal. B Environ., 138-139, 373 (2013).CrossRefGoogle Scholar
  23. 23.
    S. A. Skarlis, D. Berthout, A. Nicolle, C. Dujardin and P. Granger, J. Phys. Chem. C., 117, 7154 (2013).CrossRefGoogle Scholar
  24. 24.
    U. Deka, I. Lezcano-Gonzalez, B. M. Weckhuysen and A. M. Beale, ACS Catal., 3, 413 (2013).CrossRefGoogle Scholar
  25. 25.
    U. Deka, I. Lezcano-Gonzalez, S. J. Warrender, A. Lorena Picone, P. A. Wright and B. M. Weckhuysen, Micropor. Mesopor. Mater., 166, 144 (2013).CrossRefGoogle Scholar
  26. 26.
    X. Shi, F. Liu, L. Xie, W. Shan and H. He, Environ. Sci. Technol., 47, 3293 (2013).CrossRefGoogle Scholar
  27. 27.
    G. Lv, F. Bin, C. Song, K. Wang and J. Song, Fuel, 107, 217 (2013).CrossRefGoogle Scholar
  28. 28.
    C. K. Narula, X. Yang, M. Moses-debusk, D. R. Mullins, S. M. Mahurin and Z. Wu, Final Report Nano Catalysts for Diesel Engine Emission Remediation (2012).CrossRefGoogle Scholar
  29. 29.
    W. Xue, P. Burk and S. Boorse, US Patent, 7,601,662 (2009).Google Scholar
  30. 30.
    D. W. Fickel and R. F. Lobo, J. Phys. Chem. C., 114, 1633 (2010).CrossRefGoogle Scholar
  31. 31.
    H. Y. Chen, in Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts, I. Nova and E. Tronconi Eds., Springer Science and Business Media, New York (2014).Google Scholar
  32. 32.
    D. W. Fickel, E. D’Addio, J. A. Lauterbach and R. F. Lobo, Appl. Catal. B Environ., 102, 441 (2011).CrossRefGoogle Scholar
  33. 33.
    Q. Ye, L. Wang and R. T. Yang, Appl. Catal. A Gen., 427-428, 24 (2012).CrossRefGoogle Scholar
  34. 34.
    L. Ma, Y. Cheng, G. Cavataio, R. W. McCabe, L. Fu and J. Li, Chem. Eng. J., 225, 323 (2013).CrossRefGoogle Scholar
  35. 35.
    D. Wang, Y. Jangjou, Y. Liu, M. K. Sharma, J. Luo, J. Li, K. Kamasamudram and W. S. Epling, Appl. Catal. B Environ., 165, 438 (2015).CrossRefGoogle Scholar
  36. 36.
    K. Leistner, O. Mihai, K. Wijayanti, A. Kumar, K. Kamasamudram, N. W. Currier, A. Yezerets and L. Olsson, Catal. Today, 258, 49 (2015).CrossRefGoogle Scholar
  37. 37.
    L. Ma, Y. Cheng, G. Cavataio, R. W. McCabe, L. Fu and J. Li, Appl. Catal. B Environ., 156-157, 428 (2014).CrossRefGoogle Scholar
  38. 38.
    C. Petitto and G. Delahay, Top. Catal., 59, 895 (2016).CrossRefGoogle Scholar
  39. 39.
    J. H. Kwak, R. G. Tonkyn, D. H. Kim, J. Szanyi and C. H. F. Peden, J. Catal., 275, 187 (2010).CrossRefGoogle Scholar
  40. 40.
    U. Deka, A. Juhin, E. A. Eilertsen, H. Emerich, M. A. Green and S. T. Korhonen, J. Phys. Chem. C., 116, 4809 (2012).CrossRefGoogle Scholar
  41. 41.
    V. F. Kispersky, A. J. Kropf, F. H. Ribeiro and J. T. Miller, Phys. Chem. Chem. Phys., 14, 2229 (2012).CrossRefGoogle Scholar
  42. 42.
    S. Kieger, G. Delahay, B. Coq and B. Neveu, J. Catal., 183, 267 (1999).CrossRefGoogle Scholar
  43. 43.
    R. Zhang, Y. Li and T. Zhen, RSC Adv., 4, 52130 (2014).CrossRefGoogle Scholar
  44. 44.
    International Zeolite Association. http://www.iza-online.org/ (accessed 19 Feb, 2016).Google Scholar
  45. 45.
    F. Gao, J. H. Kwak, J. Szanyi and C. H. F. Peden, Top. Catal., 56, 1441 (2013).CrossRefGoogle Scholar
  46. 46.
    M. Gomez-Cazalilla, J. M. Merida-Robles, A. Gurbani, E. Rodriguez-Castellon and A. Jimenez-Lopez, J. Solid State Chem., 180, 1130 (2007).CrossRefGoogle Scholar
  47. 47.
    S. Brandenberger, O. Kröcher, A. Tissler and R. Althoff, Ind. Eng. Chem. Res., 50, 4308 (2011).CrossRefGoogle Scholar
  48. 48.
    A. Shishkin, P. A. Carlsson, H. Härelind and M. Skoglundh, Top. Catal., 56, 567 (2013).CrossRefGoogle Scholar
  49. 49.
    L. Wang, J. R. Gaudet, W. Li and D. Weng, J. Catal., 306, 68 (2013).CrossRefGoogle Scholar
  50. 50.
    P. N.R. Vennestrøm, A. Katerinopoulou, R. R. Tiruvalam, A. Kustov, P. G. Moses, P. Concepcion and A. Corma, ACS Catal., 3, 2158 (2013).CrossRefGoogle Scholar
  51. 51.
    M. Zamadics, X. Chen and L. Kevan, J. Phys. Chem., 96, 5488 (1992).CrossRefGoogle Scholar
  52. 52.
    B. Pereda-Ayo, U. De La Torre, M. J. Illán-Gómez, A. Bueno-López and J. R. González-Velasco, Appl. Catal. B Environ., 147, 420 (2014).CrossRefGoogle Scholar
  53. 53.
    J. Xue, X. Wang, G. Qi, J. Wang, M. Shen and W. Li, J. Catal., 297, 56 (2013).CrossRefGoogle Scholar
  54. 54.
    S. Kieger, G. Delahay, B. Coq and B. Neveu, J. Catal., 183, 267 (1999).CrossRefGoogle Scholar
  55. 55.
    G. Delahay, B. Coq, S. Kieger and B. Neveu, Catal. Today, 54, 431 (1999).CrossRefGoogle Scholar
  56. 56.
    K. Kamasamudram, C. Henry, N. Currier and A. Yezerets, SAE Int. J. Engines., 5, 688 (2012).CrossRefGoogle Scholar
  57. 57.
    G. J. Bartley and C. Sharp, SAE Int. J. Engines., 5, 683 (2012).CrossRefGoogle Scholar
  58. 58.
    K. Kamasamudram, A. Yezerets, X. Chen, N. Currier, M. Castagnola and H.-Y. Chen, SAE Int. J. Engines., 4, 1810 (2011).CrossRefGoogle Scholar
  59. 59.
    F. Gao, N. M. Washton, Y. Wang, M. Kollar, J. Szanyi and C. H. F. Peden, J. Catal., 331, 25 (2015).CrossRefGoogle Scholar
  60. 60.
    J. Hun Kwak, H. Zhu, J. H. Lee, C. H. F. Peden and J. Szanyi, Chem. Commun., 48, 4758 (2012).CrossRefGoogle Scholar
  61. 61.
    J. H. Kwak, T. Varga, C. H. F. Peden, F. Gao, J. C. Hanson and J. Szanyi, J. Catal., 314, 83 (2014).CrossRefGoogle Scholar
  62. 62.
    J. Wang, T. Yu, X. Wang, G. Qi, J. Xue, M. Shen and W. Li, Appl. Catal. B Environ., 127, 137 (2012).CrossRefGoogle Scholar
  63. 63.
    L. Wang, W. Li, G. Qi and D. Weng, J. Catal., 289, 21 (2012).CrossRefGoogle Scholar
  64. 64.
    J. Xue, X. Wang, G. Qi, J. Wang, M. Shen and W. Li, J. Catal., 297, 56 (2013).CrossRefGoogle Scholar
  65. 65.
    S. Brandenberger, O. Kröcher, A. Tissler and R. Althoff, Cat. Rev.-Sci. Eng., 50(4), 492 (2008).CrossRefGoogle Scholar
  66. 66.
    M. Devadas, O. Krocher, M. Elsener, A. Wokaun, N. Soger and M. Pfeifer, Appl. Catal. B Environ., 67, 187 (2006).CrossRefGoogle Scholar
  67. 67.
    G. Delahay, D. Valade, A. Guzmanvargas and B. Coq, Appl. Catal. B Environ., 55, 149 (2005).CrossRefGoogle Scholar
  68. 68.
    H. Y. Huang, R. Q. Long and R. T. Yang, Appl. Catal. A Gen., 235, 241 (2002).CrossRefGoogle Scholar
  69. 69.
    R. Q. Long and R. T. Yang, J. Catal., 207, 224 (2002).CrossRefGoogle Scholar
  70. 70.
    F. Gao, E. D. Walter, M. Kollar, Y. Wang, J. Szanyi and C. H. F. Peden, J. Catal., 319, 1 (2014).CrossRefGoogle Scholar
  71. 71.
    A. A. Verma, S. A. Bates, T. Anggara, C. Paolucci, A. A. Parekh and K. Kamasamudram, J. Catal., 312, 179 (2014).CrossRefGoogle Scholar
  72. 72.
    R. Q. Long and R. T. Yang, J. Catal., 196, 73 (2000).CrossRefGoogle Scholar
  73. 73.
    J. S. McEwen, T. Anggara, W. F. Schneider, V. F. Kispersky, J. T. Miller and W. N. Delgass, Catal. Today, 184, 129 (2012).CrossRefGoogle Scholar
  74. 74.
    H. Sjövall, R. J. Blint and L. Olsson, Appl. Catal. B Environ., 92, 138 (2009).CrossRefGoogle Scholar
  75. 75.
    T. J. Wang, S. W. Baek, H. J. Kwon, Y. J. Kim, I. S. Nam and M. S. Cha, Ind. Eng. Chem. Res., 50, 2850 (2011).CrossRefGoogle Scholar
  76. 76.
    A. Pant and S. J. Schmieg, Ind. Eng. Chem. Res., 50, 5490 (2011).CrossRefGoogle Scholar
  77. 77.
    G. C. Bond, M. A. Keane, H. Kral and J. A. Lercher, Catal. Rev. Sci. Eng., 42, 323 (2000).CrossRefGoogle Scholar
  78. 78.
    M. Richter, U. Bentrup, R. Eckelt, M. Schneider, M.-M. Polh and R. Fricke, Appl. Catal. B: Environ., 51, 261 (2004).CrossRefGoogle Scholar
  79. 79.
    M. Colombo, I. Nova and E. Tronconi, Catal. Today, 151, 223 (2010).CrossRefGoogle Scholar
  80. 80.
    P. S. Metkar, N. Salazar, R. Muncrief, V. Balakotaiah and M. P. Harold, Appl. Catal. B Environ., 104, 110 (2011).CrossRefGoogle Scholar
  81. 81.
    A. M. Beale, F. Gao, I. Lezcano-Gonzalez, C. H. F. Peden and J. Szanyi, Chem. Soc. Rev., 44, 7371 (2015).CrossRefGoogle Scholar
  82. 82.
    M. Schreier, S. Teren, L. Belcher, J. R. Regalbuto and J. T. Miller, Nanotechnology, 16, S582 (2005).CrossRefGoogle Scholar
  83. 83.
    Y. Zuo, L. Han, W. Bao, L. Chang and J. Wang and C. Xuebao, Chinese J. Catal., 34, 1112 (2013).CrossRefGoogle Scholar
  84. 84.
    Y. Li, J. Deng, W. Song, J. Liu, Z. Zhao, M. Gao and Y. Wei, J. Phys. Chem. C. 120, 14669 (2016).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Nusnin Akter
    • 1
  • Xianyin Chen
    • 2
  • John Parise
    • 2
  • Jorge Anibal Boscoboinik
    • 1
    • 3
  • Taejin Kim
    • 1
  1. 1.Materials Science and Chemical Engineering DepartmentStony Brook UniversityStony BrookUSA
  2. 2.Geosciences DepartmentStony Brook UniversityStony BrookUSA
  3. 3.Center for Functional LaboratoryBrookhaven National LaboratoryUptonUSA

Personalised recommendations