Advertisement

Korean Journal of Chemical Engineering

, Volume 34, Issue 12, pp 3142–3149 | Cite as

Efficiency evaluation of the photocatalytic degradation of zinc oxide nanoparticles immobilized on modified zeolites in the removal of styrene vapor from air

  • Hossein Ali Rangkooy
  • Mojtaba Nakhaei PourEmail author
  • Behzad Fouladi Dehaghi
Environmental Engineering

Abstract

Styrene monomer is a volatile organic compound that has many applications in plastics, rubber, and paint manufacturing industries. Exposure to styrene vapor has certain effects, including suppression of the central nervous system, loss of concentration, weakness and fatigue, and nausea and there is a possibility of carcinogenesis in long-term exposure. Therefore, it is necessary to control and eliminate this vapor. The aim of this study was to investigate the performance of zinc oxide nanoparticles on modified natural zeolites in removing styrene vapor from the air. Natural zeolites of clinoptilolite were modified using hydrochloric acid and diphenyldichlorosilane. Next, zinc oxide nanoparticles with different ratios of 3, 5, and 10 wt% were stabilized on the zeolites. To determine their characteristics, samples were used from BET, SEM and XRD analyses. The input styrene concentration and the ratio of nanoparticles stabilized on zeolites were studied as effective functional parameters on the removal process. The efficiency results of natural zeolites (Ze) and modified zeolites (Mze) in styrene adsorption from the air show that the styrene breakthrough in the bed of MZe compared to that of Ze increases approximately two times. Also, the results showed that the removal by the process of UV/MZe-ZnO 3%, UV/MZe-ZnO 5%, and UV/MZe-ZnO 10%, was 36.5%, 40%, and 26%, respectively. From the results it can be concluded that MZe can increase the efficiency of photocatalytic degradation. Clinoptilolites of Iran can be used as an adsorbent to remove polluted air in industries that have low concentrations and flow rates.

Keywords

Photocatalytic Degradation Zinc Oxide Nanoparticles Styrene Zeolite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Hunter and S.T. Oyama, Control of volatile organic compound emissions, John Wiley (2000).Google Scholar
  2. 2.
    US Environmental Protection Agency (USEPA). Sources of indoor air pollution - organic gases (volatile organic compounds, VOCs). USEPA (2013).Google Scholar
  3. 3.
    J. Grzechulska-Damszel, S. Mozia and A.W. Morawski, Catal. Today, 156, 295 (2010).CrossRefGoogle Scholar
  4. 4.
    R. Thiruvenkatachari, S. Vigneswaran and I. S. Moon, Korean J. Chem. Eng., 25, 64 (2008).CrossRefGoogle Scholar
  5. 5.
    J. C. Crittenden, J. Liu, D.W. Hand and D. L. Perram, Water Res., 31, 429 (1997).CrossRefGoogle Scholar
  6. 6.
    H. I. De Lasa, B. Serrano and M. Salaices, Photocatal. React. Engin. Springer (2005).CrossRefGoogle Scholar
  7. 7.
    J. Saien and A.R. Soleymani, J. Ind. Eng. Chem., 18, 1683 (2012).CrossRefGoogle Scholar
  8. 8.
    T. Charinpanitkul, P. Nartpochananon, T. Satitpitakun, J. Wilcox, T. Seto and Y. Otani, J. Ind. Eng. Chem., 18, 469 (2012).CrossRefGoogle Scholar
  9. 9.
    W. Zhang, Z. Li, Y. Luo and J. Yang, J. Phys. Chem. C., 113, 8302 (2009).CrossRefGoogle Scholar
  10. 10.
    K. Hashimoto, H. Irie and A. Fujishima, Japan J. Appl. Phys., 44, 8269 (2005).CrossRefGoogle Scholar
  11. 11.
    A. Fujishima, X. Zhang and D.A. Tryk, Surface Science Reports., 63, 515 (2008).CrossRefGoogle Scholar
  12. 12.
    M. Muruganandham, Y. Zhang, R. Suri, G.-J. Lee, P.-K. Chen, S.-H. Hsieh, M. Sillanpyää and J. J. Wu, J. Nanosci. Nanotechnol., 15, 6900 (2015).CrossRefGoogle Scholar
  13. 13.
    S. Baruah and J. Dutta, Sci. Technol. Adv. Mater. (2009).Google Scholar
  14. 14.
    D. Ehrentraut, H. Sato, Y. Kagamitani, H. Sato, A. Yoshikawa and T. Fukuda, Progress in Crystal Growth and Characterization of Materials, 52, 280 (2006).CrossRefGoogle Scholar
  15. 15.
    G. B. Tabrizi and M. Mehrvar, J. Environ. Sci. Heal, Part A., 39, 3029 (2004).CrossRefGoogle Scholar
  16. 16.
    B. Jibril, A. Atta, Y. Al-Waheibi and T. Al-Waheibi, J. Ind. Eng. Chem., 19, 1800 (2013).CrossRefGoogle Scholar
  17. 17.
    M. Safari, M. Nikazar and M. Dadvar, J. Ind. Eng. Chem., 19, 1697 (2013).CrossRefGoogle Scholar
  18. 18.
    T. Komatsu, M. Takasaki, K. Ozawa, S. Furukawa and A. Muramatsu, J. Phys. Chem. C., 117, 10483 (2013).CrossRefGoogle Scholar
  19. 19.
    A. Nezamzadeh-Ejhieh and S. Khorsandi, J. Ind. Eng. Chem., 20, 937 (2014).CrossRefGoogle Scholar
  20. 20.
    N. Mansouri, M. reza Massoudinejad, H. Asilian and A. Mafreshi, J. Kermanshah. Univ. Med. Sci., 14, 3 (2010).Google Scholar
  21. 21.
    S. Alejandro, H. Valdés, M.-H. Manero and C.A. Zaror, Water Sci. Technol., 66, 1759 (2012).CrossRefGoogle Scholar
  22. 22.
    H. Valdés, S. Alejandro and C. A. Zaror, J. Hazard. Mater., 227, 34 (2012).CrossRefGoogle Scholar
  23. 23.
    M.A.A. Shahmirzadi, S.S. Hosseini and N.R. Tan, Korean J. Chem. Eng., 33, 3529 (2016).CrossRefGoogle Scholar
  24. 24.
    V.R. Posa, V. Annavaram, J.R. Koduru, V.R. Ammireddy and A.R. Somala, Korean J. Chem. Eng., 33, 456 (2016).CrossRefGoogle Scholar
  25. 25.
    C. Ao and S. Lee, Appl. Catal. B: Environ., 44, 191 (2003).CrossRefGoogle Scholar
  26. 26.
    C. Ao and S. Lee, J. Photochem. Photobio. A: Chem., 161, 131 (2004).CrossRefGoogle Scholar
  27. 27.
    H. Ichiura, T. Kitaoka and H. Tanaka, Chemosphere, 50, 79 (2003).CrossRefGoogle Scholar
  28. 28.
    P. Zhang, J. Liu and Z. Zhang, Chem. Lett., 33, 1242 (2004).CrossRefGoogle Scholar
  29. 29.
    R.-D. Sun, A. Nakajima, I. Watanabe, T. Watanabe and K. Hashimoto, J. Photochem. Photobio. A: Chem., 136, 111 (2000).CrossRefGoogle Scholar
  30. 30.
    U.S.E.P.A. (USEPA). Sources of indoor air pollution-organic gases (volatile organic compounds, VOCs). http://www.epa.gov/iaq/voc.html.Google Scholar
  31. 31.
    A. Tossavainen, The Scandinavian Journal of Work, Environment & Health, 4 (1978).Google Scholar
  32. 32.
    EPA. Drinking Water Standards Technical Factsheet on: Styrene. Water, 1 (1993).Google Scholar
  33. 33.
    M. Lim, Y. Zhou, B. Wood, Y. Guo, L. Wang, V. Rudolph and G. Lu, J. Phys. Chem. C., 112, 19655 (2008).CrossRefGoogle Scholar
  34. 34.
    TOXICOLOGICAL PROFILE FOR STYRENE, Life Systems, Inc. Under Subcontract to:Clement International Corporation Under Contract No. 205 88-0608. Agency for Toxic Substances and Disease Registry U.S. Public Health Service (1992).Google Scholar
  35. 35.
    Threshold Limit Value For Chemical Substances And Physical Agents And Biological Exposure Indices, American Conferences Of Government Industrial Hygienists (ACGIH) (2012).Google Scholar
  36. 36.
    P. Huttenloch, K. E. Roehl and K. Czurda, Environ. Sci. Technol., 35, 4260 (2001).CrossRefGoogle Scholar
  37. 37.
    H. Asilian, A. Khavanin, M. Afzali and S. Dehestani, Health Scope., 2012, 7 (2012).CrossRefGoogle Scholar
  38. 38.
    Y.-P. Zhu, M. Li, Y.-L. Liu, T.-Z. Ren and Z.-Y. Yuan, J. Phys. Chem. C., 118, 10963 (2014).CrossRefGoogle Scholar
  39. 39.
    M. Hernandez, L. Corona, A. Gonzalez, F. Rojas, V. Lara and F. Silva, Ind. Eng. Chem Res., 44, 2908 (2005).CrossRefGoogle Scholar
  40. 40.
    M. Khatamian and Z. Alaji, Desalination, 248, 286 (2012).Google Scholar
  41. 41.
    J.-C. Chen and C.-T. Tang, J. Hazard. Mater., 142, 88 (2007).CrossRefGoogle Scholar
  42. 42.
    J. Mo, Y. Zhang, Q. Xu, J. J. Lamson and R. Zhao, Atmosph. Environ., 43, 2229 (2009).CrossRefGoogle Scholar
  43. 43.
    R.K. Nath, M. F. M. Zain, A. A. H. Kadhum and A. Kaish, Construction and Building Materials, 54, 348 (2014).CrossRefGoogle Scholar
  44. 44.
    D.A. Friesen, L. Morello, J.V. Headley and C. H. Langford, J. Photochem. Photobio. A: Chem, 133, 213 (2000).CrossRefGoogle Scholar
  45. 45.
    F. J. DeSilva, Water quality products, 16 (2000).Google Scholar
  46. 46.
    A. Rezaee, H. Rangkooy, A. Jonidi-Jafari and A. Khavanin, Appl. Surf. Sci, 286, 235 (2013).CrossRefGoogle Scholar
  47. 47.
    H.C. Wang, H. S. Liang and M. B. Chang, J. Hazard. Mater., 186, 1781 (2011).CrossRefGoogle Scholar
  48. 48.
    T. Mishra, P. Mohapatra and K. M. Parida, Appl. Catal. B: Environ, 79, 3 (2008).CrossRefGoogle Scholar
  49. 49.
    E. Rezaei, J. Soltan and N. Chen, Appl. Catal. B: Environ., 136, 239 (2013).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2017

Authors and Affiliations

  • Hossein Ali Rangkooy
    • 1
    • 2
  • Mojtaba Nakhaei Pour
    • 2
    Email author
  • Behzad Fouladi Dehaghi
    • 2
  1. 1.Environmental Technologies Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
  2. 2.Department of Occupational Health, Health FacultyAhvaz Jundishapur University of Medical SciencesAhvazIran

Personalised recommendations