Advertisement

Korean Journal of Chemical Engineering

, Volume 34, Issue 10, pp 2731–2737 | Cite as

Behavior of toluene adsorption on activated carbon nanofibers prepared by electrospinning of a polyacrylonitrile-cellulose acetate blending solution

  • Young-Wan Ju
  • Gil-Young Oh
Materials (Organic, Inorganic, Electronic, Thin Films)

Abstract

Activated carbon nanofibers were prepared with polymer blends that consisted of polyacrylonitrile (PAN) and cellulose acetate (CA), by electrospinning and subsequent thermal treatment. The average fiber diameter of samples was about 200 nm, ranging from 150 to 400 nm. The specific surface area, total pore volume, and micropore volume increased with increasing CA content. As the CA content was increased up to 20%, the pore characteristics for the adsorption performance were enhanced. However, excess CA content (over 30%) was harmful to volatile organic compounds (VOCs) adsorption ability due to changing morphology of the activated carbon nanofibers. The O/C ratio was increased with increasing CA content. However, the O/C ratios of all activated carbon nanofibers prepared with blends represent small values revealing non-polarity of the surface. The adsorption capacities of PC10, PC09, PC08 and PC07 were 65 g/100 g, 66 g/100 g, 72 g/100 g and 67 g/100 g. The blends of the PAN with CA showed better characteristics than those of PAN alone, but apparently there is an appropriate blending ratio (20%) for high-performance of activated carbonaceous materials.

Keywords

Activated Carbon Nanofiber Electrospinning Adsorption Surface Properties Volatile Organic Compounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Dwivedi, V. Gaur, A. Sharma and N. Verma, Sep. Purif. Technol., 39, 23 (2004).CrossRefGoogle Scholar
  2. 2.
    K. Na, J. Environ. Manage., 81, 392 (2006).CrossRefGoogle Scholar
  3. 3.
    K.H. Chang, T. F. Chen and H.C. Huang, Sci. Total Environ., 346, 184 (2005).CrossRefGoogle Scholar
  4. 4.
    S.D. Maleknia, T.L. Bell and M.A. Adams, Int. J. Mass Spectrom., 262, 203 (2007).CrossRefGoogle Scholar
  5. 5.
    A. Ribes, G. Carrera, E. Gallego, X. Roca, M. J. Berenguer and X. Guardino, J. Chromatogr. A, 1140, 44 (2007).CrossRefGoogle Scholar
  6. 6.
    M.G. Evtyugina, C. Pio, T. Nunes, P.G. Pinho and C.S. Costa, Atmos. Environ., 41, 2171 (2007).CrossRefGoogle Scholar
  7. 7.
    M. F. Mohamed, D. Kang and V. P. Aneja, Chemosphere, 47, 863 (2002).CrossRefGoogle Scholar
  8. 8.
    H.P. Kuo, S.W. Yao, A.N. Huang and W.Y. Hsu, Korean J. Chem. Eng., 34, 73 (2017).CrossRefGoogle Scholar
  9. 9.
    A. Tarjomannejad, A. Farzi, A. Niaei and D. Salari, Korean J. Chem. Eng., 33, 2628 (2017).CrossRefGoogle Scholar
  10. 10.
    Z. Guo, J.C. S. Chang, L.E. Spark and R.C. Fortmann, Atmos. Environ., 33, 1205 (1999).CrossRefGoogle Scholar
  11. 11.
    A.L. Hinwood and P. N. Di Marco, Toxicology, 181-182, 361 (2002).CrossRefGoogle Scholar
  12. 12.
    A. Indarto, D.R. Yang, C. H. Azhari, W. H.W. Mohtar, J.W. Choi, H. Lee and H. K. Song, Chem. Eng. J., 131, 1 (2007).CrossRefGoogle Scholar
  13. 13.
    K. J. Kim, C.S. Kang, Y. J. You, M.C. Chung, M.W. Woo, W. J. Jeong, N. C. Park and H. G. Ahn, Catal. Today, 111, 223 (2006).CrossRefGoogle Scholar
  14. 14.
    C. L. Chuang, P.C. Chiang and E. E. Chang, Chemosphere, 53, 17 (2003).CrossRefGoogle Scholar
  15. 15.
    P. Pre, F. Delage, C. Faur-Brasquet and P. Le Cloirec, Fuel Process. Technol., 77-78, 345 (2002).CrossRefGoogle Scholar
  16. 16.
    J. Machnikowski, P. Rutkowski and M.A. Diez, J. Anal. Appl. Pyrol., 76, 80 (2006).CrossRefGoogle Scholar
  17. 17.
    E. Raymindo-Pinero, D. Cazorla-Amoros, A. Linares-Solano and J. Find, Carbon, 40, 597 (2002).CrossRefGoogle Scholar
  18. 18.
    B. Grzyb, J. Machnikowski, J.V. Weber and A. Koch, J. Anal. Appl. Pyrol., 67, 77 (2003).CrossRefGoogle Scholar
  19. 19.
    S.H. Park, C. Kim, Y. I. Jeong, D. Y. Lim, Y. E. Lee and K. S. Yang, Synthetic Met., 146, 207 (2004).CrossRefGoogle Scholar
  20. 20.
    R.T. Yang, Adsorbents: fundamentals and applications, A John Wiley & Sons, INC. Publication (2003).CrossRefGoogle Scholar
  21. 21.
    F. Watanabe, Y. Korai, I. Mochida and Y. Nishimura, Carbon, 38, 741 (2000).CrossRefGoogle Scholar
  22. 22.
    V. E. Kalayci, P. K. Patra, Y. K. Kim, S. C. Ugbolue and S. B. Warner, Polymer, 46, 7191 (2005).CrossRefGoogle Scholar
  23. 23.
    H. Ono and A. Oya, Carbon, 44, 682 (2006).CrossRefGoogle Scholar
  24. 24.
    D.D. Edie, Carbon, 36(4), 345 (1998).CrossRefGoogle Scholar
  25. 25.
    J.M. Deitzel, J. Kleinmeyer, D. Harris and N.C. Beck Tan, Polymer, 42, 261 (2001).CrossRefGoogle Scholar
  26. 26.
    C. Kim, Y.O. Choi, W. J. Lee and K. S. Yang, Electrochim. Acta, 50, 883 (2004).CrossRefGoogle Scholar
  27. 27.
    K. S. Yang, Y. J. Yoon, M. S. Lee, W. J. Lee and J. H. Kim, Carbon, 40, 897 (2002).CrossRefGoogle Scholar
  28. 28.
    P. J.M. Carrott, M.M. L. Ribeiro Carrott and P.A.M. Mourão, J. Anal. Appl. Pyrol., 75, 120 (2006).CrossRefGoogle Scholar
  29. 29.
    G.-Y. Oh, Y.W. Ju, M.Y. Kim, H.R. Jung, H. J. Kim and W. J. Lee, Sci. Total Environ., 393, 341 (2008).CrossRefGoogle Scholar
  30. 30.
    C. Liu and R. Bai, J. Membr. Sci., 279, 336 (2006).CrossRefGoogle Scholar
  31. 31.
    C. Brasquet and P. Le Cloirec, Carbon, 35, 1307 (1997).CrossRefGoogle Scholar
  32. 32.
    K. J. Edgar, C. M. Buchanan, J. S. Debenham, P. A. Rundquist, B.D. Seiler, M.C. helton and D. Tindall, Prog. Polym. Sci., 26, 1605 (2001).CrossRefGoogle Scholar
  33. 33.
    T. J. Xue, M. A. McKinney and C.A. Wilkie, Polym. Degrad. Stabil., 58, 193 (1997).CrossRefGoogle Scholar
  34. 34.
    M.A. Lillo-Rodenas, A. J. Fletcher, K. M. Thomas, D. Casorla-Amoros and A. Linares-Solano, Carbon, 44, 1455 (2006).CrossRefGoogle Scholar
  35. 35.
    T. Oshima, Y. Kogami, T. Miyata and T. Uragami, J. Membr. Sci., 206, 156 (2005).CrossRefGoogle Scholar
  36. 36.
    E. Raymindo-Pinero, K. Kierzek, J. Machnikowski and F. Beguin, Carbon, 44, 2498 (2006).CrossRefGoogle Scholar
  37. 37.
    S.K. Ryu, B. J. Park and S. J. Park, J. Colloid Interface Sci., 215, 167 (1999).CrossRefGoogle Scholar
  38. 38.
    Z. H. Huang, F. K. Kang, Y. P. Zheng and J. B. Yang, Carbon, 40, 1363 (2002).CrossRefGoogle Scholar
  39. 39.
    A. P. Terzyk, Colloids Surf., A, 177, 23 (2001).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2017

Authors and Affiliations

  1. 1.Departments of Chemical Engineering, College of EngineeringWonkwang UniversityIksan, JeonbukKorea
  2. 2.JeollaNamdo Institute of Health and EnvironmentMuan, JeonnamKorea

Personalised recommendations