Advertisement

Korean Journal of Chemical Engineering

, Volume 34, Issue 10, pp 2591–2596 | Cite as

Hydrocracking of waste lubricant into gasoline fraction over CoMo catalyst supported on mesoporous carbon from bovine bone gelatin

  • Marthinus Pongsendana
  • Wega TrisunaryantiEmail author
  • Farin Windy Artanti
  • Iip Izul Falah
  • Sutarno
Catalysis, Reaction Engineering

Abstract

The hydrocracking of waste lubricant into gasoline fraction was carried out using CoMo catalyst supported on mesoporous carbon. The carbon was synthesized using bovine bone gelatin and SBA-15 as a template. The metals were loaded onto the carbon by wet impregnation method. The total metal content of catalyst was prepared into two different amounts which were labelled as CoMo/MCG1 and CoMo/MCG2. Catalytic activity and selectivity were evaluated in hydrocracking of waste lubricant at 450, 475, and 500 °C, and lubricant/catalyst weight ratio of 50, 100, 200, 300, and 400. The result revealed that acidity and specific surface area of the catalyst played an important role in determining the catalytic performance in the hydrocracking of waste lubricant. The highest percentage of gasoline fraction was 58.09%, produced by hydrocracking of waste lubricant at 475 °C and lubricant/catalyst weight ratio of 300 using CoMo/MCG2 catalyst.

Keywords

Hydrocracking Waste Lubricant CoMo Catalyst Gelatin Gasoline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Permsubscul, T. Vitidsant and S. Damronglerd, Korean J. Chem. Eng., 24(1), 37 (2006).CrossRefGoogle Scholar
  2. 2.
    W. Trisunaryanti, S. Purwono and A. Putranto, Indo. J. Chem., 8(3), 342 (2008).Google Scholar
  3. 3.
    W. Trisunaryanti, A. Syoufian and S. Purwono, J. Chem. Chem. Eng., 7, 175 (2013).Google Scholar
  4. 4.
    M. Egorova and R. Prins, J. Catal., 225, 417 (2004).CrossRefGoogle Scholar
  5. 5.
    M. Hussain, K. S. Song, H. J. Lee and K. S. Ihm, Ind. Eng. Chem. Res., 45, 536 (2006).CrossRefGoogle Scholar
  6. 6.
    Y. Boukoberine and B. Hamada, Arabian J. Chem., 9(1), 522 (2016).CrossRefGoogle Scholar
  7. 7.
    E. Soghrati, M. Kazemeini, M.A. Rashidi and J. K. Jozani, Procedia Eng., 42, 1484 (2012).CrossRefGoogle Scholar
  8. 8.
    W. Sriningsih, M. G. Saerodji, W. Trisunaryanti, R. Armunanto and I. I. Falah, Procedia Environ. Sci., 20, 215 (2014).CrossRefGoogle Scholar
  9. 9.
    Y. Fan, J. Lu, G. Shi, H. Liu and X. Bao, Catal. Today, 125, 220 (2007).CrossRefGoogle Scholar
  10. 10.
    M. Hussain and S. Ihm, Ind. Eng. Chem. Res., 3, 698 (2009).CrossRefGoogle Scholar
  11. 11.
    X. He, Y. Zhang, C. Zhu, H. Huang, H. Hu, Y. Liu and Z. Kang, New. J. Chem. (2015), DOI:10.1039/C5NJ01430A.Google Scholar
  12. 12.
    D.-H. Yeom, J. Choi, W. J. Byun and J. K. Lee, Korean J. Chem. Eng., 33, 3029 (2016).CrossRefGoogle Scholar
  13. 13.
    A. Lu, W. Li, W. Schmidt, W. Kiefer and S. Ferdi, Carbon, 42, 2939 (2004).CrossRefGoogle Scholar
  14. 14.
    B. Sakintuna and Y. Yurum, Micropor. Mesopor. Mater., 93, 304 (2006).CrossRefGoogle Scholar
  15. 15.
    K. Kamegawa, M. Kodama, K. Nishikubo, H. Yamada, Y. Adachi and H. Yoshida, Micropor. Mesopor. Mater., 87, 118 (2005).CrossRefGoogle Scholar
  16. 16.
    V. P. Vigón, M. Sevilla and A. B. Fuertes, Appl. Surf. Sci., 261, 574 (2012).CrossRefGoogle Scholar
  17. 17.
    M. Ulfa, W. Trisunaryanti, I. I. Falah, I. Kartini and Sutarno, JAC, 7(5), 1 (2014).Google Scholar
  18. 18.
    J. Lee, S. Hwang, S.B. Lee and I. K. Song, Korean J. Chem. Eng., 27(6), 1755 (2010).CrossRefGoogle Scholar
  19. 19.
    J. S. Jung, T. J. Kim and G. Seo, Korean J. Chem. Eng., 21(4), 777 (2004).CrossRefGoogle Scholar
  20. 20.
    J.M. Ramos, J. A. Wang, L. F. Chen, U. Arellano, S. P. Ramirez, R. Sotelo and P. Schachat, Catal. Commun., 72, 57 (2015).CrossRefGoogle Scholar
  21. 21.
    S. Ahmadi, Z. Yuan, S. Rohani and C. Xu, Catal. Today, 269, 182 (2016).CrossRefGoogle Scholar
  22. 22.
    M.T. Le, V. H. Do, D.D. Truong, L. Bruneel, I.V. Driessche, A. Riisager, R. Fehrmann and Q.T. Tinh, Ind. Eng. Chem. Res., 55, 4846 (2016).CrossRefGoogle Scholar
  23. 23.
    T. Maiyalagan, A.B. Nassr, T.O. Alaje, M. Bron and K. Scott, J. Power Sources, 211, 147 (2012).CrossRefGoogle Scholar
  24. 24.
    S.T. Sie, Ind. Eng. Chem. Res., 31, 1881 (2003).CrossRefGoogle Scholar
  25. 25.
    G. Chandrasekar, W. J. Son and W. S. Ahn, J. Porous Mater., 16, 545 (2009).CrossRefGoogle Scholar
  26. 26.
    J. Lee, Y. Choi, J. Shin and J.K. Lee, Catal. Today (2015), http://dx.doi.org/10.1016/j.cattod.2015.09.046.Google Scholar
  27. 26.
    A. Ishihara, S. Tanaka, M. Aiba, T. Hashimoto and H. Nasu, J. Jpn. Petrol. Inst., 58, 2 (2015).Google Scholar
  28. 27.
    J. Yang, Y. Dong, J. Li, Z. Liu, F. Min and Y. Li, Korean J. Chem. Eng., 32, 2247 (2015).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2017

Authors and Affiliations

  • Marthinus Pongsendana
    • 1
  • Wega Trisunaryanti
    • 1
    Email author
  • Farin Windy Artanti
    • 1
  • Iip Izul Falah
    • 1
  • Sutarno
    • 1
  1. 1.Department of ChemistryUniversitas Gadjah MadaYogyakartaIndonesia

Personalised recommendations