Advertisement

Korean Journal of Chemical Engineering

, Volume 34, Issue 9, pp 2548–2558 | Cite as

Advanced dual fluidized bed steam gasification of wood and lignite with calcite as bed material

  • Florian Benedikt
  • Josef Fuchs
  • Johannes Christian Schmid
  • Stefan Müller
  • Hermann Hofbauer
Fluidization, Particle Technology

Abstract

This paper presents experimental results with a new generation of a 100 kW th dual fluidized bed steam gasification pilot plant with calcite as bed material, converting wood and lignite in separate test runs into product gas. The results are compared to experiments with the same fuels with olivine as bed material and the previous generation of the gasification pilot plant at TU Wien. The highly catalytic active calcium oxide shifted the product gas composition towards higher hydrogen and carbon dioxide and lower carbon monoxide content. The tar amount was decreased and the tar composition changed, resulting in lower tar dew points. The dust content in the product gas was reduced with the advanced pilot plant design with calcite in comparison to the classic design with olivine. Therefore, attrition of bed material was decreased by utilizing the advanced design and calcite with its benefits can be used without profuse continuous replacement of bed material.

Keywords

DFB Steam Gasification Advanced 100 kW Pilot Plant Calcite Wood Lignite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Hofbauer, R. Rauch, K. Bosch, R. Koch and C. Aichernig, Biomass CHP plant Guessing-A success story, in Pyrolysis and Gasification of Biomass and Waste, A. V. Bridgewater, CPL Press, Newbury, Berks., UK (2003).Google Scholar
  2. 2.
    V. Wilk and H. Hofbauer, Fuel Processing Technol., 141, 138 (2016).CrossRefGoogle Scholar
  3. 3.
    F. Kirnbauer, F. Maierhans, M. Kuba and H. Hofbauer, State of the art biomass gasification for CHP production - the Ulm plant, in Proceedings of the 2nd Conference on Renewable Energy Gas Technology, Barcelona, Spain (2015).Google Scholar
  4. 4.
    I. Gunnarsson. The GoBiGas project - efficient transfer of biomass to biofuels, in Proceedings of the International Seminar on Gasification, Gothenburg, Sweden (2010).Google Scholar
  5. 5.
    F. Kirnbauer, V. Wilk, H. Kitzler, S. Kern and H. Hofbauer, Fuel, 95, 553 (2012).CrossRefGoogle Scholar
  6. 6.
    M. Kuba, F. Havlik, F. Kirnbauer and H. Hofbauer, Biomass Bioenergy, 89, 40 (2016).CrossRefGoogle Scholar
  7. 7.
    S. Kern, C. Pfeifer and H. Hofbauer, Chem. Eng. Sci., 90, 284 (2013).CrossRefGoogle Scholar
  8. 8.
    J. C. Schmid, T. Pröll, C. Pfeifer and H. Hofbauer, Improvement of gas-solid interaction in dual circulating fluidized bed systems in Proc. 9th Eur. Conf. Ind. Furn. Boil., Estoril, Portugal (2011).Google Scholar
  9. 9.
    J. C. Schmid, C. Pfeifer, H. Kitzler, T. Pröll and H. Hofbauer, A new dual fluidized bed gasifier design for improved in situ conversion of hydrocarbons in Proc. Int. Conf. Polygeneration Strateg., Vienna, Austria (2011).Google Scholar
  10. 10.
    H. A. Pasteiner, Cold flow investigations on a novel dual fluidised bed steam gasification test plant, master thesis, Institute of Chemical, Biological and Environmental Engineering, TU Wien (2015).Google Scholar
  11. 11.
    M. Kolbitsch, First fuel tests at a novel 100 kWth dual fluidized bed steam gasification pilot plant, Ph. D. Thesis, Institute of Chemical, Biological and Environmental Engineering, TU Wien (2016).Google Scholar
  12. 12.
    J. C. Schmid, S. Müller and H. Hofbauer, First scientific results with the novel dual fluidized bed gasification test facility at TU Wien, in Proceedings of the 24th European Biomass Conference and Exhibition, Amsterdam, The Netherlands (2016).Google Scholar
  13. 13.
    S. Müller, J. C. Schmid and H. Hofbauer, First results with an innovative biomass gasification test plant, in Proceedings 3rd International Conference on Renewable Energy Gas Technology (REGATEC), Malmö, Schweden (2016).Google Scholar
  14. 14.
    M. Schmalzl, Implementierung der MSR-Technik einer 100 kW DUAL FLUID Versuchsanlage zur Vergasung von Festbrennstoffen, master thesis, Institute of Chemical, Biological and Environmental Engineering, TU Wien (2014).Google Scholar
  15. 15.
    S. V. B. van Paasen, J. H. A. Kiel, J. P. A. Neeft, H. A. M. Knoef, G. J. Buffinga, U. zielke, K. Sjöström, C. Brage, P. Hasler, P. A. Simell, M. Suomalainen, M. A. Dorrington and L. Thomas, Guideline for sampling and analysis of tar and particles in biomass producer gases, Report ECN-02-090, ECN (2002).Google Scholar
  16. 16.
    S. Kern, C. Pfeifer and H. Hofbauer, Fuel Processing Technol., 111, 1 (2013).CrossRefGoogle Scholar
  17. 17.
    T. Pröll and H. Hofbauer, Int. J. Chem. Reactor Eng., 6, A89, available at: http://www. bepress. com/ijcre/vol6/A89 (2008).Google Scholar
  18. 18.
    Outokumpu HSC Chemistry Thermochemical Database, ver 6. 1 A Roine - Finland: Outokumpu Research Oy (2002).Google Scholar
  19. 19.
    M. Kuba, F. Kirnbauer and H. Hofbauer, Biomass Conver. Biorefinery, 7, 11 (2016).CrossRefGoogle Scholar
  20. 20.
    T. A. Milne, N. Abatzoglou and R. J. Evans, Biomass gasifier “tars”: their nature, formation, and conversion, Golden, CO: National Renewable Energy Laboratory (1998).CrossRefGoogle Scholar
  21. 21.
    U. Wolfesberger, S. Koppatz, C. Pfeifer and H. Hofbauer, Effect of iron supported olivine on the distribution of tar compounds derived by steam gasification of biomass, in Proceedings of the International Conference on Polygeneration Strategies (ICPS11), Vienna, Austria (2011).Google Scholar
  22. 22.
    L. P. L. M. Rabou, R. W. R. Zwart, B. J. Vreugdenhil and L. Bos, Tar in biomass producer gas, the Energy research Centre of the Netherlands (ECN) experience: An enduring challenge (2009).Google Scholar
  23. 23.
    Energy Research Center of the Netherlands (ECN), http://www.thersites.nl/completemodel.aspx (accessed: September 15, 2016).Google Scholar
  24. 24.
    H. Kitzler, Zweibettwirbelschicht-Dampfvergasung von biogenen, ascheintensiven Brenn-und Reststoffen - Einfluss der Asche auf den Prozess, Ph. D. thesis, Institute of Chemical, Biological and Environmental Engineering, TU Wien (2013).Google Scholar
  25. 25.
    S. Kern, Gasification and Co-Gasification of Coal, Biomass and Plastics in a Dual Fluidized Bed System, Ph. D. Thesis, Institute of Chemical, Biological and Environmental Engineering, TU Wien (2013).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2017

Authors and Affiliations

  • Florian Benedikt
    • 1
  • Josef Fuchs
    • 1
  • Johannes Christian Schmid
    • 1
  • Stefan Müller
    • 1
  • Hermann Hofbauer
    • 1
  1. 1.Institute of Chemical, Environmental and Biological EngineeringTU WienViennaAustria

Personalised recommendations