Korean Journal of Chemical Engineering

, Volume 34, Issue 5, pp 1524–1530 | Cite as

In situ mass spectrometry of glucose decomposition under hydrothermal reactions

  • Pattasuda Duangkaew
  • Shuhei Inoue
  • Tsunehiro Aki
  • Yutaka Nakashimada
  • Yoshiko Okamura
  • Takahisa Tajima
  • Yukihiko Matsumura
Polymer, Industrial Chemistry

Abstract

We designed an in situ mass spectrometry (in situ MS) analysis method and developed to identify the products of glucose decomposition under hydrothermal condition for the first time. The in situ MS analysis was performed by coupling a tubular batch reactor with a quadrupole mass analyzer via custom-built connection fittings. The products of glucose decomposition were investigated by in situ MS, mass spectrometry of cold effluent, and high-performance liquid chromatography (HPLC) analysis of cold effluent and the results were compared. At 140 °C, in situ MS and mass spectrometry of cold effluent showed that the decomposition of glucose does not proceed; this was confirmed by comparison with the mass spectral database for glucose. At 180 °C or higher, a clear base fragmentation peak of 5-hydroxymethylfurfural (5-HMF) at position m/z 97 and that of furfural at m/z 96, formic acid (m/z=46) and levulinic acid (m/z=116) were observed by mass spectrometry. No levulinic acid or furfural was observed through conventional HPLC analysis under any condition; only glucose, formic acid, and 5-HMF could be detected. The effectiveness of in situ MS analysis is clear, compared to mass spectrometry analysis of cold effluent and HPLC analysis.

Keywords

In Situ Analysis Mass Spectrometry Glucose Hydrothermal Reaction Quadrupole Mass Analyzer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Chen, D. Zhou, G. Luo, S. Zhang and J. Chen, Renew. Sust. Energy Rev., 47, 427 (2015).CrossRefGoogle Scholar
  2. 2.
    M. Song, H. Duc Pham, J. Seon and H. C. Woo, Renew. Sust. Energy Rev., 50, 782 (2015).CrossRefGoogle Scholar
  3. 3.
    N. Wei, J. Quarterman and Y. S. Jin, Trends Biotechnol., 31, 70 (2013).CrossRefGoogle Scholar
  4. 4.
    D. Knezevic, W. P. M. van Swaaij and S. R. A. Kersten, Ind. Eng. Chem. Res., 48, 4731 (2009).CrossRefGoogle Scholar
  5. 5.
    X. F. Cao, X. W. Peng, S. N. Sun, L. X. Zhong, W. Chen, S. Wang and R. C. Sun, Carbohyd. Polym., 118, 44 (2015).CrossRefGoogle Scholar
  6. 6.
    S. S. Joshi, A. D. Zodge, K. V. Pandare and B. D. Kulkarni, Ind. Eng. Chem. Res., 53, 18796 (2014).CrossRefGoogle Scholar
  7. 7.
    M. Blazso, J. Anal. Appl. Pyrol., 74, 344 (2005).CrossRefGoogle Scholar
  8. 8.
    P. R. Patwardhan, J. A. Satrio, R. C. Brown and B. H. Shanks, Bioresour. Technol., 101, 4646 (2010).CrossRefGoogle Scholar
  9. 9.
    M. F. Alif, K. Matsumoto and K. Kitagawa, Microchem. J., 99, 394 (2011).CrossRefGoogle Scholar
  10. 10.
    M. R. Hurt, J. C. Degenstein, P. Gawecki, D. J. Borton, N. R. Vinueza, L. Yang, R. Agrawal, W. N. Delgass, F. H. Ribeiro and H. I. Kenttamaa, Anal. Chem., 85, 10927 (2013).CrossRefGoogle Scholar
  11. 11.
    H. Kano, T. Okamoto, S. Kitagawa, Y. Iiguni, H. Ohtani, H. Ito, K. Iwai and M. Kuno, J. Anal. Appl. Pyrol., 113, 165 (2015).CrossRefGoogle Scholar
  12. 12.
    J. Piskorz, P. Majerski, D. Radlein, A. Vladars-Usas and D. S. Scott, J. Anal. Appl. Pyrol., 56, 145 (2000).CrossRefGoogle Scholar
  13. 13.
    Y.-C. Lin, J. Cho, G. A. Tompsett, P. R. Westmoreland and G. W. Huber, J. Phys. Chem. C, 113, 20097 (2009).CrossRefGoogle Scholar
  14. 14.
    F. R. Sharpe and C. G. Chappell, J. I. Brewing, 96, 381 (1990).CrossRefGoogle Scholar
  15. 15.
    Y. Yu, Z. M. Shafie and H. Wu, Ind. Eng. Chem. Res., 52, 17006 (2013).CrossRefGoogle Scholar
  16. 16.
    Y. Yu, B. Song, Y. Long and H. Wu, Energy Fuels, 30, 8787 (2016).CrossRefGoogle Scholar
  17. 17.
    T. Yoshida, S. Yanachi and Y. Matsumura, J. Jpn. Inst. Energy, 86, 700 (2007).CrossRefGoogle Scholar
  18. 18.
    Y. Matsumura, S. Yanachi and T. Yoshida, Ind. Eng. Chem. Res., 45, 1875 (2006).CrossRefGoogle Scholar
  19. 19.
    C. Promdej and Y. Matsumura, Ind. Eng. Chem. Res., 50, 8492 (2011).CrossRefGoogle Scholar
  20. 20.
    B. M. Kabyemela, T. Adschiri, R. M. Malaluan and K. Arai, Ind. Eng. Chem. Res., 38, 2888 (1999).CrossRefGoogle Scholar
  21. 21.
    B. M. Kabyemela, T. Adschiri, R. M. Malaluan and K. Arai, Ind. Eng. Chem. Res., 36, 1552 (1997).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2017

Authors and Affiliations

  • Pattasuda Duangkaew
    • 1
  • Shuhei Inoue
    • 2
  • Tsunehiro Aki
    • 3
  • Yutaka Nakashimada
    • 3
  • Yoshiko Okamura
    • 3
  • Takahisa Tajima
    • 3
  • Yukihiko Matsumura
    • 2
  1. 1.Department of Mechanical Science and EngineeringHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Division of Energy and Environmental Engineering, Institute of EngineeringHiroshima UniversityHigashi-HiroshimaJapan
  3. 3.Department of Molecular Biotechnology, Graduate School of Advanced Sciences of MatterHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations