Advertisement

Korean Journal of Chemical Engineering

, Volume 34, Issue 5, pp 1563–1575 | Cite as

Experimental and numerical predictions of ash particle erosion in SCR monolithic catalysts for coal-fired utility boilers

  • Cong Yu
  • Fengqi SiEmail author
  • Shaojun Ren
  • Xiaoming Jiang
The 11th Korea-China Clean Energy Workshop

Abstract

Erosion by particles in monolithic selective catalyst reduction (SCR) processes can reduce the operational life of a catalyst and threaten the performance of the SCR system. We present an integrated approach implemented in two stages to predict the erosion condition of SCR processes. First, a 3D computational fluid dynamics (CFD) model was established for a full-sized SCR reactor to obtain information on the flue gas and ash particles at the entrance of the catalyst layer. Second, the detailed inner catalyst structure layers were simulated using MATLAB and a catalyst erosion model was developed, according to the initial and boundary conditions obtained using the CFD models. Relative cold state tests and erosion measurements were conducted to validate the simulation results. The model was applied to investigate the relationship between the reactor installment, the gas-solid flow field and the catalyst erosion. Moreover, a series of retrofit schemes were implemented to confirm that this method can be used in engineering applications.

Keywords

Coal-fired Boiler SCR Catalysts Ash Particle Erosion CFD Coupling Calculation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Forzatti, Appl. Catal. A: Gen., 222, 221 (2001).CrossRefGoogle Scholar
  2. 2.
    K. V. Shah, M. K. Cieplik, C. I. Betrand, W. L. van de Kamp and H. B. Vuthaluru, Fuel Process. Technol., 91, 531 (2010).CrossRefGoogle Scholar
  3. 3.
    S. A. Benson, J. D. Laumb, C. R. Crocker and J. H. Pavlish, Fuel Process. Technol., 86, 577 (2005).CrossRefGoogle Scholar
  4. 4.
    J. R. Strege, C. J. Zygarlicke, B. C. Folkedahl and D. P. McCollor, Fuel, 87, 1341 (2008).CrossRefGoogle Scholar
  5. 5.
    C. H. Bartholomew, Appl. Catal. A: Gen., 212, 17 (2001).CrossRefGoogle Scholar
  6. 6.
    Z. Lei, C. Wen, J. Zhang and B. Chen, Ind. Eng. Chem. Res., 50, 5942 (2011).CrossRefGoogle Scholar
  7. 7.
    T. Schwämmle, F. Bertsche, A. Hartung, J. Brandenstein, B. Heidel and G. Scheffknecht, Chem. Eng. J., 222, 274 (2013).CrossRefGoogle Scholar
  8. 8.
    J. Yao, Z. Zhong and L. Zhu, Chem. Eng. Technol., 38, 283 (2015).CrossRefGoogle Scholar
  9. 9.
    J. Yang, H. Ma, Y. Yamamoto, J. Yu, G. Xu, Z. Zhang and Y. Suzuki, Chem. Eng. J., 230, 513 (2013).CrossRefGoogle Scholar
  10. 10.
    M. B. Gandhi, R. Vuthaluru, H. Vuthaluru, D. French and K. Shah, Appl. Therm. Eng., 42, 90 (2012).CrossRefGoogle Scholar
  11. 11.
    G. C. Pereira, F. J. de Souza and D. A. de Moro Martins, Powder Technol., 261, 105 (2014).Google Scholar
  12. 12.
    K. P. Schade, H. J. Erdmann, T. Hädrich, H. Schneider, T. Frank and K. Bernert, Powder Technol., 125, 242 (2002).CrossRefGoogle Scholar
  13. 13.
    Y. I. Oka, K. Okamura and T. Yoshida, Wear, 259, 95 (2005).CrossRefGoogle Scholar
  14. 14.
    Y. I. Oka and T. Yoshida, Wear, 259, 102 (2005).CrossRefGoogle Scholar
  15. 15.
    R. Nagarajan, B. Ambedkar, S. Gowrisankar and S. Somasundaram, Wear, 267, 122 (2009).CrossRefGoogle Scholar
  16. 16.
    Z. Lin, X. Ruan, Z. Zhu and X. Fu, Powder Technol., 254, 150 (2014).CrossRefGoogle Scholar
  17. 17.
    Z. Mansouri, H. Arabnejad, S. A. Shirazi and B. S. McLaury, Wear, 332, 1090 (2015).CrossRefGoogle Scholar
  18. 18.
    K. G. Budinski, Wear, 203, 302 (1997).CrossRefGoogle Scholar
  19. 19.
    L. Gan, S. Lei, J. Yu, H. Ma, Y. Yamamoto, Y. Suzuki and Z. Zhang, Front. Environ. Sci. Eng., 9, 979 (2015).CrossRefGoogle Scholar
  20. 20.
    M. Parsi, K. Najmi, F. Najafifard, S. Hassani, B. S. McLaury and S. A. Shirazi, J. Nat. Gas Sci. Eng., 21, 850 (2014).CrossRefGoogle Scholar
  21. 21.
    H. J. Chae, S. T. Choo, H. Choi, I. S. Nam, H. S. Yang and S. L. Song, Ind. Eng. Chem. Res., 39, 1159 (2000).CrossRefGoogle Scholar
  22. 22.
    J. M. Cho, J. W. Choi, S. H. Hong, K. C. Kim, J. H. Na and J. Y. Lee, Korean J. Chem. Eng., 23, 43 (2006).CrossRefGoogle Scholar
  23. 23.
    Y. Xu, Y. Zhang, J. Wang and J. Yuan, Comput. Chem. Eng., 49, 50 (2013).CrossRefGoogle Scholar
  24. 24.
    Y. Xu, Y. Zhang, F. Liu, W. Shi and J. Yuan, Comput. Chem. Eng., 69, 119 (2014).CrossRefGoogle Scholar
  25. 25.
    H. C. Park, H. S. Choi and Y. S. Choi, J. Comput. Fluids Eng., 16, 66 (2011).CrossRefGoogle Scholar
  26. 26.
    B. E. Launder and D. B. Spalding, Comput. Methods Appl. Mech. Eng., 3, 269 (1974).CrossRefGoogle Scholar
  27. 27.
    A. Li and G. Ahmadi, Aerosol. Sci. Technol., 16, 209 (1992).CrossRefGoogle Scholar
  28. 28.
    M. Sommerfeld and N. Huber, Int. J. Multiphase Flow, 25, 1457 (1999).CrossRefGoogle Scholar
  29. 29.
    B. Kuan, N. Rea and M. P. Schwarz, Powder Technol., 179, 65 (2007).CrossRefGoogle Scholar
  30. 30.
    M. Mezhericher, T. Brosh and A. Levy, Particul. Sci. Technol., 29, 197 (2011).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2017

Authors and Affiliations

  • Cong Yu
    • 1
  • Fengqi Si
    • 1
    Email author
  • Shaojun Ren
    • 1
  • Xiaoming Jiang
    • 2
  1. 1.School of Energy and EnvironmentSoutheast UniversityNanjingP. R. China
  2. 2.Datang Nanjing Environmental Protection Technology Co., Ltd.NanjingP. R. China

Personalised recommendations