Advertisement

Korean Journal of Chemical Engineering

, Volume 34, Issue 4, pp 1021–1026 | Cite as

Performance and emissions analysis on diesel engine fuelled with cashew nut shell biodiesel and pentanol blends

  • Yuvarajan Devarajan
  • Beem Kumar Nagappan
  • Dinesh Babu Munuswamy
Energy

Abstract

We studied the impact of blending pentanol, a next generation biofuel, with cashew nut shell biodiesel on its performance and emissions characteristics in a constant speed compression ignition engine. Our main objective was to reduce CO, HC, NO X and smoke emission when fueled with neat cashew nut shell biodiesel and the pentanol blends. Cashew nut shell oil is a byproduct from cashew nut industry. Since it is nonedible, it can be used as a promising alternative. Conventional transesterification process was used to convert the cashew nut shell oil into cashew nut shell biodiesel. Pentanol with 98.4% purity was used as an oxygenated additive. The experiment involved three test fuels: neat cashew nut shell biodiesel (C100), Pentanol blended with cashew nut shell biodiesel by 10% volume (C90P10) and Pentanol blended with cashew nut shell biodiesel by 20% volume (C80P20). The feasibility of using neat biofuel (without adding diesel) was also investigated. Experimental work concluded that the test fuels used in this study does not require any modification in engines. In addition, the combustion of fuels was smooth and there was no physical and visible damage in the engine components when fueled with cashew nut shell biodiesel and the pentanol blends. By adding 10% and 20% of pentanol to cashew nut shell biodiesel, significant reduction in CO, HC, NO X and smoke emission was observed. In addition, brake thermal efficiency increased marginally with slight reduction in brake specific fuel consumption.

Keywords

Pentanol Cashew Nut Shell Biodiesel Performance Emissions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Santhanakrishnan and S. Jose, Adv. Mater. Res., 984, 893 (2014).CrossRefGoogle Scholar
  2. 2.
    D. C. Rakopoulos, C. D. Rakopoulos, E. G. Giakoumis, A. M. Dimaratos and D. C. Kyritsis, Energy Convers. Manage., 51, 1989 (2010).CrossRefGoogle Scholar
  3. 3.
    D. C. Rakopoulos, C. D. Rakopoulos, E. G. Giakoumis, R. G. Papagiannakis and D. C. Kyritsis, Energy, 73, 354 (2014).CrossRefGoogle Scholar
  4. 4.
    E. G. Giakoumis, C. D. Rakopoulos, A. M. Dimaratos and D. C. Rakopoulos, P. I Mech. Eng. D. J Aut., 226, 97 (2012).CrossRefGoogle Scholar
  5. 5.
    M. Karabektas and M. Hosoz, Renew Energy, 34, 1554 (2009).CrossRefGoogle Scholar
  6. 6.
    A. Murcak, C. Hasimoglu, I. Cevik, M. Karabektas and G. Ergen, Fuel, 109, 582 (2013).CrossRefGoogle Scholar
  7. 7.
    Z. Wang, H. Liu, J. Zhang, J. Wang and S. Shuai, Energy P., 75, 2337 (2015).CrossRefGoogle Scholar
  8. 8.
    J. Campos-Fernandez, J. M. Arnal, J. Gomez, N. Lacalle and M. P. Dorado, Fuel, 107, 866 (2013).CrossRefGoogle Scholar
  9. 9.
    L. Li, J. Wang, Z. Wang and J. Xiao, Fuel, 156, 211 (2015).CrossRefGoogle Scholar
  10. 10.
    A. Atmanli, Fuel, 176, 209 (2016).CrossRefGoogle Scholar
  11. 11.
    O. Dogan, Fuel, 90, 2467 (2011).CrossRefGoogle Scholar
  12. 12.
    A. Atmanli, E. Ileri and B. Yuksel, Energy Convers. Manage., 81, 312 (2014).CrossRefGoogle Scholar
  13. 13.
    G. Gonca and E. Dobrucali, J. Renew Sust. Energy, 8, 025702 (2016).CrossRefGoogle Scholar
  14. 14.
    B. Rajesh kumar and S. Saravanan, Fuel, 160, 217 (2015).CrossRefGoogle Scholar
  15. 15.
    S. H. Sengar, A. G. Mohod and Y. P. Khandetod, Int. J. Energy Eng., 2, 78 (2012).CrossRefGoogle Scholar
  16. 16.
    A. G. Mohod, S. Jain and Y. P. Khandetod, J. Biofuels Bioenergy, 1, 71 (2015).CrossRefGoogle Scholar
  17. 17.
    A. Mohod, Energy Res. J., 1, 47 (2010).CrossRefGoogle Scholar
  18. 18.
    R. J. Moffat, J. Fluid Eng., 107, 173 (1985).CrossRefGoogle Scholar
  19. 19.
    A. B. Koc and M. Abdullah, Fuel Process Technol., 109, 70 (2013).CrossRefGoogle Scholar
  20. 20.
    A. Atmanli, Fuel, 172, 209 (2016).CrossRefGoogle Scholar
  21. 21.
    B. Choi and X. Jiang, Fuel, 154, 188 (2015).CrossRefGoogle Scholar
  22. 22.
    B. Rajesh Kumar, T. Muthukumar, V. Krishnamoorthy and S. Saravanan, R. C Adv., 6, 61869 (2016).Google Scholar
  23. 23.
    M. Venkata Ramanan and D. Yuvarajan, Atmos Pollut Res., 7, 477 (2016).CrossRefGoogle Scholar
  24. 24.
    D. Yuvarajan and M. Venkata Ramanan, J. Mech. Sci. Technol., 30, 437 (2016).CrossRefGoogle Scholar
  25. 25.
    D. Yuvarajan and M. Venkata Ramanan, J. Environ. Eng. Landscape Manage., 24, 90 (2016).CrossRefGoogle Scholar
  26. 26.
    D. Yuvarajan and M. V. Ramanan, Arab. J. Sci. Eng., 41, 2023 (2016).CrossRefGoogle Scholar
  27. 27.
    H. Kang, H. Song, J. Ha and B.-K. Na, Korean J. Chem. Eng., 33, 2084 (2016).CrossRefGoogle Scholar
  28. 28.
    V. Y. Plaksin, H.-J. Lee, V. A. Riaby, Y. S. Mok, S. H. Lim and J. H. Kim, Korean J. Chem. Eng., 25, 84 (2008).CrossRefGoogle Scholar
  29. 29.
    A. Rangrazi, H. Niazmand and H. M. Heravi, Korean J. Chem. Eng., 30, 1588 (2013).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2017

Authors and Affiliations

  • Yuvarajan Devarajan
    • 1
  • Beem Kumar Nagappan
    • 2
  • Dinesh Babu Munuswamy
    • 3
  1. 1.Department of Mechanical EngineeringChennaiIndia
  2. 2.Department of Mechanical EngineeringSathyabama UniversityChennaiIndia
  3. 3.Department of Mechanical EngineeringPanimalar Engineering CollegeChennaiIndia

Personalised recommendations