Korean Journal of Chemical Engineering

, Volume 34, Issue 4, pp 952–960 | Cite as

Minimizing loss in LCD glass manufacturing by cutting pattern optimization based on integer programming

Process Systems Engineering, Process Safety
  • 48 Downloads

Abstract

Loss reduction plays a critical role in improving both process efficiency and overall profitability. As processes become more complex, loss reduction becomes more challenging and systematic decision-supporting methods are thus needed. This paper illustrates such a method in the context of liquid crystal display (LCD) glass production, which involves a series of chemical processes. Loss-minimizing integer programming models are proposed to compute a cutting pattern that allocates multiple demands to LCD mother glass. Numerical examples from actual LCD glass processes are presented to illustrate the applicability of the proposed method.

Keywords

LCD Glass Integer Programming Cutting Pattern Two-stage Two-dimensional Strip Packing Problem Loss Minimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Wäscher, H. Hauβner and H. Schumann, Eur. J. Oper. Res., 183, 1109 (2007).CrossRefGoogle Scholar
  2. 2.
    A. Lodi, S. Martello and M. Monaci, Eur. J. Oper. Res., 141, 241 (2002).CrossRefGoogle Scholar
  3. 3.
    S. Martello, M. Monaci and D. Vigo, Informs J. Comput., 15, 310 (2003).CrossRefGoogle Scholar
  4. 4.
    A. Lodi, S. Martello and D. Vigo, J. Comb. Optim., 8, 363 (2004).CrossRefGoogle Scholar
  5. 5.
    J. Puchinger and G.R. Raidl, Eur. J. Oper. Res., 183, 1304 (2007).CrossRefGoogle Scholar
  6. 6.
    G. F. Cintra, F. K. Miyazawa, Y. Wakabayashi and E. C. Xavier, Eur. J. Oper. Res., 191, 59 (2008).CrossRefGoogle Scholar
  7. 7.
    R. Alvarez-Valdes, F. Parreño and J.M. Tamarit, OR Spectrum, 31(2), 431 (2009).CrossRefGoogle Scholar
  8. 8.
    P. C. Gilmore and R. E. Gomory, Oper. Res., 13, 94 (1965).CrossRefGoogle Scholar
  9. 9.
    I. Correia, L. Gouveia and F. Saldanha-da-Gama, Comput. Oper. Res., 35, 2103 (2008).CrossRefGoogle Scholar
  10. 10.
    R. Macedo, C. Alves and J. M. Valério de Carvalho, Comput. Oper. Res., 37, 991 (2010).CrossRefGoogle Scholar
  11. 11.
    E. Silva, F. Alvelos and J. M. Valério de Carvalho, Eur. J. Oper. Res., 205, 699 (2010).CrossRefGoogle Scholar
  12. 12.
    H. Dyckhoff, Oper. Res., 29, 1092 (1981).CrossRefGoogle Scholar
  13. 13.
    K.T. Park, J. H. Ryu, H. K. Lee and I.-B. Lee, J. Chem Eng. Jpn., 45, 219 (2012).CrossRefGoogle Scholar
  14. 14.
    K.T. Park, J. H. Ryu, H. K. Lee and I.-B. Lee, Korean J. Chem. Eng., 30, 278 (2013).CrossRefGoogle Scholar
  15. 15.
    K.T. Park, H. Kim, S. Lee, H.-K. Lee, J. H. Ryu and I.-B. Lee, Comput. Chem. Eng., 48, 312 (2013).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2017

Authors and Affiliations

  1. 1.Department of Nuclear and Energy System EngineeringDongguk UniversityGyeongjuKorea
  2. 2.Department of Chemical EngineeringPOSTECHPohangKorea

Personalised recommendations