Advertisement

Korean Journal of Chemical Engineering

, Volume 34, Issue 3, pp 844–853 | Cite as

Quantitative estimation of internal concentration polarization in a spiral wound forward osmosis membrane module compared to a flat sheet membrane module

  • Changseong Bae
  • Kiho Park
  • Hwan Heo
  • Dae Ryook YangEmail author
Separation Technology, Thermodynamics

Abstract

Internal concentration polarization (ICP) within the forward osmosis (FO) membrane affects the reduction of driving force. The magnitude of ICP in the FO membrane was investigated experimentally by measuring water flux in both spiral wound (SW) and flat-sheet (FS) modules with different draw solutions (sodium chloride, sodium sulfate, and disodium phosphate). The FO SW module always shows inferior water flux performance to the FO FS module. The water flux in the FO SW module can be easily estimated by just changing structure parameter. The estimated structure parameter in the FO SW module is 9.1325×10−4 m, which is quite higher than 4.2×10−4 m in the FO FS module. The increase of the structure parameter is attributed to the bending of the FO membrane in the SW module. It can be concluded that a module design such like SW type is not suitable for the FO process.

Keywords

Forward Osmosis Internal Concentration Polarization Spiral Wound Membrane Module Parameter Estimation Desalination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Y. Cath, A. E. Childress and M. Elimelech, J. Membr. Sci., 281, 70 (2006).CrossRefGoogle Scholar
  2. 2.
    T.-S. Chung, S. Zhang, K. Y. Wang, J. Su and M. M. Ling, Desalination, 287, 78 (2012).CrossRefGoogle Scholar
  3. 3.
    D. Y. Kim, B. Gu, J. H. Kim and D. R. Yang, J. Membr. Sci., 444, 440 (2013).CrossRefGoogle Scholar
  4. 4.
    J. R. McCutcheon, R. L. McGinnis and M. Elimelech, Desalination, 174, 1 (2005).CrossRefGoogle Scholar
  5. 5.
    D. L. Shaffer, N. Y. Yip, J. Gilron and M. Elimelech, J. Membr. Sci., 415, 1 (2012).CrossRefGoogle Scholar
  6. 6.
    A. Achilli, T. Y. Cath, E. A. Marchand and A. E. Childress, Desalination, 239, 10 (2009).CrossRefGoogle Scholar
  7. 7.
    K. Lutchmiah, A. Verliefde, K. Roest, L. C. Rietveld and E. R. Cornelissen, Water Res., 58, 179 (2014).CrossRefGoogle Scholar
  8. 8.
    J. Su, T.-S. Chung, B. J. Helmer and J. S. de Wit, J. Membr. Sci., 396, 92 (2012).CrossRefGoogle Scholar
  9. 9.
    A. Achilli, T. Y. Cath and A. E. Childress, J. Membr. Sci., 343, 42 (2009).CrossRefGoogle Scholar
  10. 10.
    Q. She, X. Jin and C. Y. Tang, J. Membr. Sci., 401, 262 (2012).CrossRefGoogle Scholar
  11. 11.
    N. Y. Yip and M. Elimelech, Environ. Sci. Technol., 46, 5230 (2012).CrossRefGoogle Scholar
  12. 12.
    X. Jin, J. Shan, C. Wang, J. Wei and C. Y. Tang, J. Hazard. Mater., 227, 55 (2012).CrossRefGoogle Scholar
  13. 13.
    Q. Yang, K. Y. Wang and T.-S. Chung, Sep. Purif. Technol., 69, 269 (2009).CrossRefGoogle Scholar
  14. 14.
    G. T. Gray, J. R. McCutcheon and M. Elimelech, Desalination, 197, 1 (2006).CrossRefGoogle Scholar
  15. 15.
    J. R. McCutcheon and M. Elimelech, J. Membr. Sci., 284, 237 (2006).CrossRefGoogle Scholar
  16. 16.
    C. Y. Tang, Q. She, W. C. Lay, R. Wang and A. G. Fane, J. Membr. Sci., 354, 123 (2010).CrossRefGoogle Scholar
  17. 17.
    S. Zhang, K. Y. Wang, T.-S. Chung, H. Chen, Y. Jean and G. Amy, J. Membr. Sci., 360, 522 (2010).CrossRefGoogle Scholar
  18. 18.
    J. Wei, C. Qiu, C. Y. Tang, R. Wang and A. G. Fane, J. Membr. Sci., 372, 292 (2011).CrossRefGoogle Scholar
  19. 19.
    P. G. Ingole and N. P. Ingole, Korean J. Chem. Eng., 31, 2109 (2014).CrossRefGoogle Scholar
  20. 20.
    S. Loeb, L. Titelman, E. Korngold and J. Freiman, J. Membr. Sci., 129, 243 (1997).CrossRefGoogle Scholar
  21. 21.
    J. T. Arena, B. McCloskey, B. D. Freeman and J. R. McCutcheon, J. Membr. Sci., 375, 55 (2011).CrossRefGoogle Scholar
  22. 22.
    N.-N. Bui, M. L. Lind, E. M. Hoek and J. R. McCutcheon, J. Membr. Sci., 385, 10 (2011).CrossRefGoogle Scholar
  23. 23.
    W. Fang, R. Wang, S. Chou, L. Setiawan and A. G. Fane, J. Membr. Sci., 394, 140 (2012).CrossRefGoogle Scholar
  24. 24.
    S. S. Hong, W. Ryoo, M.-S. Chun and G.-Y. Chung, Korean J. Chem. Eng., 32, 1249 (2015).CrossRefGoogle Scholar
  25. 25.
    C. Klaysom, T. Y. Cath, T. Depuydt and I. F. Vankelecom, Chem. Soc. Rev., 42, 6959 (2013).CrossRefGoogle Scholar
  26. 26.
    E. Cornelissen, D. Harmsen, E. Beerendonk, J. Qin and J. Kappelhof, J. Water Reuse Desalin., 1, 133 (2011).Google Scholar
  27. 27.
    Y. C. Kim and S.-J. Park, Environ. Sci. Technol., 45, 7737 (2011).CrossRefGoogle Scholar
  28. 28.
    A. Achilli, T. Y. Cath and A. E. Childress, J. Membr. Sci., 364, 233 (2010).CrossRefGoogle Scholar
  29. 29.
    N. T. Hancock and T. Y. Cath, Environ. Sci. Technol., 43, 6769 (2009).CrossRefGoogle Scholar
  30. 30.
    H. Y. Ng, W. Tang and W. S. Wong, Environ. Sci. Technol., 40, 2408 (2006).CrossRefGoogle Scholar
  31. 31.
    J. E. Kim, S. Phuntsho, F. Lotfi and H. K. Shon, Desalin. Water. Treat., 53, 2782 (2015).CrossRefGoogle Scholar
  32. 32.
    Y. Xu, X. Peng, C. Y. Tang, Q. S. Fu and S. Nie, J. Membr. Sci., 348, 298 (2010).CrossRefGoogle Scholar
  33. 33.
    B. Gu, D. Kim, J. Kim and D. Yang, J. Membr. Sci., 379, 403 (2011).CrossRefGoogle Scholar
  34. 34.
    D. Y. Kim, B. Gu and D. R. Yang, Korean J. Chem. Eng., 30, 1691 (2013).CrossRefGoogle Scholar
  35. 35.
    S.-B. Kwon, J. S. Lee, S. J. Kwon, S.-T. Yun, S. Lee and J.-H. Lee, J. Membr. Sci., 488, 111 (2015).CrossRefGoogle Scholar
  36. 36.
    L. Huang, N.-N. Bui, M. T. Meyering, T. J. Hamlin and J. R. McCutcheon, J. Membr. Sci., 437, 141 (2013).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2017

Authors and Affiliations

  • Changseong Bae
    • 1
  • Kiho Park
    • 1
  • Hwan Heo
    • 1
  • Dae Ryook Yang
    • 1
    Email author
  1. 1.Department of Chemical and Biological EngineeringKorea UniversitySeoulKorea

Personalised recommendations