Korean Journal of Chemical Engineering

, Volume 34, Issue 2, pp 500–510 | Cite as

Formation of intermediate band and low recombination rate in ZnO-BiVO4 heterostructured photocatalyst: Investigation based on experimental and theoretical studies

Materials (Organic, Inorganic, Electronic, Thin Films)

Abstract

We present systematic investigations on the relationship between interface formation and enhanced photocatalytic activity of ZnO-BiVO4 nanocomposite based on experimental techniques supported by theoretical calculations. The interaction between ZnO (101) nanosheet and BiVO4 surface at the heterojunction was explored to study the charge transfer and separation mechanism responsible for enhanced photocatalytic response. XPS results and DFT computations mutually validate the reasonable existence of ZnO-BiVO4 interface. The nanocomposite photocatalytic activity, tested for various weight ratios, was found to be highest for ZnO-BiVO4 (1 : 1) under visible-light irradiation. Moreover, the percentage removal of MB was found to be greater than RhB for the same time duration. Steady state and time resolve photoluminescence were employed to understand the carrier lifetime and emissivity. Visible light driven high photoactivity exhibited by ZnO-BiVO4 (1 : 1) was ascribed to the formation of intermediate band and comparatively low recombination rate, which facilitates the separation of electron-hole pairs. Based on the theoretical outcome, we found that valence band maximum was occupied by Bi s orbital and conduction band minimum was occupied by Zn s orbital, which indicates the maximum electron transition from BiVO4 valence band to ZnO conduction band in ZnO-BiVO4 composite. These results demonstrated that heterojunction semiconductors are an effective strategy that can be successfully applied to develop photocatalysts that respond to visible light for organic pollutant degradation.

Keywords

Zinc Oxide Monoclinic-bismuth Vanadate Intermediate Band DFT Time Resolved PL 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2016_284_MOESM1_ESM.pdf (717 kb)
Formation of intermediate band and low recombination rate in ZnO-BiVO4 heterostructured photocatalyst: Investigation based on experimental and theoretical studies

References

  1. 1.
    M. N. Chong, B. Jin, C. W. K. Chow and C. Saint, Water Res., 44, 2997 (2010).CrossRefGoogle Scholar
  2. 2.
    S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun and J. Sun, RSC Adv., 5, 14610 (2015).CrossRefGoogle Scholar
  3. 3.
    P. Venkata, L. Reddy, K. H. Kim and Y. H. Kim, Asian J. Atmos. Environ., 5, 181 (2011).CrossRefGoogle Scholar
  4. 4.
    J. Zhao and X. Yang, Build. Environ., 38, 645 (2003).CrossRefGoogle Scholar
  5. 5.
    E. Boonen and A. Beeldens, Coatings, 4, 553 (2014).CrossRefGoogle Scholar
  6. 6.
    D. Chatterjee and S. Dasgupta, J. Photochem. Photobiol. C Photochem. Rev., 6, 186 (2005).CrossRefGoogle Scholar
  7. 7.
    J. Zhao, C. Chen and W. Ma, Top. Catal., 35, 269 (2005).CrossRefGoogle Scholar
  8. 8.
    R. Michal, S. Sfaelou and P. Lianos, Molecules, 19, 19732 (2014).CrossRefGoogle Scholar
  9. 9.
    M. De Oliveira Melo and L. A. Silva, J. Braz. Chem. Soc., 22, 1399 (2011).Google Scholar
  10. 10.
    A. Ajmal, I. Majeed, R. N. Malik, H. Idriss and M. A. Nadeem, RSC Adv., 4, 37003 (2014).Google Scholar
  11. 11.
    K. Maeda, J. Photochem. Photobiol. C Photochem. Rev., 12, 237 (2011).CrossRefGoogle Scholar
  12. 12.
    S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo and J. Tang, Energy Environ. Sci., 8, 731 (2015).CrossRefGoogle Scholar
  13. 13.
    K. Hashimoto, H. Irie and A. Fujishima, Jpn. J. Appl. Phys., 44, 8269 (2005).CrossRefGoogle Scholar
  14. 14.
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo and D. W. Bahnemann, Chem. Rev., 114, 9919 (2014).CrossRefGoogle Scholar
  15. 15.
    C. Siriwong, N. Wetchakun, B. Inceesungvorn, D. Channei, T. Samerjai and S. Phanichphant, Prog. Cryst. Growth Charact. Mater., 58, 145 (2012).CrossRefGoogle Scholar
  16. 16.
    H. Chen and L. Wang, Beilstein J. Nanotechnol., 5, 696 (2014).CrossRefGoogle Scholar
  17. 17.
    M. M. Khan, S. F. Adil and A. Al-Mayouf, J. Saudi Chem. Soc., 19, 462 (2015).CrossRefGoogle Scholar
  18. 18.
    R. Ullah and J. Dutta, J. Hazard. Mater., 156, 194 (2008).CrossRefGoogle Scholar
  19. 19.
    C. Mondal, J. Pal, M. Ganguly, A. K. Sinha, J. Jana and T. Pal, New J. Chem., 38, 2999 (2014).CrossRefGoogle Scholar
  20. 20.
    C. Yu, K. Yang, Y. Xie, Q. Fan, J. C. Yu, Q. Shu and C. Wang, Nanoscale, 5, 2142 (2013).CrossRefGoogle Scholar
  21. 21.
    R. Saravanan, M. M. Khan, V. K. Gupta, E. Mosquera, F. Gracia, V. Narayanan and A. Stephen, RSC Adv., 5, 34645 (2015).CrossRefGoogle Scholar
  22. 22.
    J. P. Dhal, B. G. Mishra and G. Hota, RSC Adv., 5, 58072 (2015).CrossRefGoogle Scholar
  23. 23.
    B. Panigrahy and D. D. Sarma, RSC Adv., 5, 8918 (2015).CrossRefGoogle Scholar
  24. 24.
    M. Gratzel, Nat. (London, U. K. ) 414, 338 (2001).CrossRefGoogle Scholar
  25. 25.
    M. Han, X. Chen, T. Sun, O. K. Tan and M. S. Tse, CrystEngComm, 13, 6674 (2011).CrossRefGoogle Scholar
  26. 26.
    Y. Park, K. J. McDonald and K.-S. Choi, Chem. Soc. Rev., 42, 2321 (2013).CrossRefGoogle Scholar
  27. 27.
    Michael G. Walter, Emily L. Warren, James R. McKone, Shannon W. Boettcher, Qixi Mi, Elizabeth A. Santori and Nathan S. Lewis, Chem. Rev., 110, 6446 (2010).CrossRefGoogle Scholar
  28. 28.
    S. Balachandran, N. Prakash, K. Thirumalai, M. Muruganandham, M. Sillanp and M. Swaminathan, Ind. Eng. Chem. Res., 53, 8346 (2014).CrossRefGoogle Scholar
  29. 29.
    X. Fu, M. Xie, P. Luan and L. Jing, ACS Appl. Mater. Interfaces, 6, 18550 (2014).CrossRefGoogle Scholar
  30. 30.
    S. J. A. Moniz, J. Zhu and J. Tang, Adv. Energy Mater., 4, 1 (2014).CrossRefGoogle Scholar
  31. 31.
    C. Yang, M. Qin, Y. Wang, D. Wan, F. Huang and J. Lin, Sci. Rep., 3, 1286 (2013).Google Scholar
  32. 32.
    D. Ke, T. Peng, L. Ma, P. Cai and K. Dai, Inorg. Chem., 48, 4685 (2009).CrossRefGoogle Scholar
  33. 33.
    T. Bhuyan, M. Khanuja, R. Sharma, S. Patel, M. R. Reddy, S. Anand and A. Varma, J. Nanoparticle Res., 17, 288 (2015).CrossRefGoogle Scholar
  34. 34.
    H. Lin, J. Cao, B. Luo, B. Xu and S. Chen, Chinese Sci. Bull., 57, 2901 (2012).CrossRefGoogle Scholar
  35. 35.
    J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).CrossRefGoogle Scholar
  36. 36.
    Y. Liu, H. Dai, J. Deng, L. Zhang and C. T. Au, Nanoscale, 4, 2317 (2012).CrossRefGoogle Scholar
  37. 37.
    M. K. Kavitha, P. Gopinath and H. John, Phys. Chem. Chem. Phys., 17, 14647 (2015).CrossRefGoogle Scholar
  38. 38.
    K. Das, S. N. Sharma, M. Kumar and S. K. De, J. Phys. Chem. C, 113, 14783 (2009).CrossRefGoogle Scholar
  39. 39.
    S. Paul and A. Choudhury, Appl. Nanosci., 4, 839 (2013).CrossRefGoogle Scholar
  40. 40.
    K. V. Baiju, A. Zachariah, S. Shukla, S. Biju, M. L. P. Reddy and K. G. K. Warrier, Catal. Lett., 130, 130 (2009).CrossRefGoogle Scholar
  41. 41.
    P. Y. Kuang, J. R. Ran, Z. Q. Liu, H. J. Wang, N. Li, Y. Z. Su, Y. G. Jin and S. Z. Qiao, Chem. - A Eur. J., 21, 15360 (2015).CrossRefGoogle Scholar
  42. 42.
    J. Zhang, F. Ren, M. Deng and Y. Wang, Phys. Chem. Chem. Phys., 17, 10218 (2015).CrossRefGoogle Scholar
  43. 43.
    X. Chang, J. Huang, Q. Tan, M. Wang, G. Ji, S. Deng and G. Yu, Catal. Commun., 10, 1957 (2009).CrossRefGoogle Scholar
  44. 44.
    L. Li, W. Wang, H. Liu, X. Liu, Q. Song and S. Ren, J. Phys. Chem. C, 113, 8460 (2009).Google Scholar
  45. 45.
    A. A. Mohamad, M. S. Hassan, M. K. Yaakob, M. F. M. Taib, F. W. Badrudin, O. H. Hassan and M. Z. A. Yahya, J. King Saud Univ. - Eng. Sci., dx.doi.org/10.1016/j.jksues.2015.08.002.Google Scholar
  46. 46.
    Z. Zhao, Z. Li and Z. Zou, Phys. Chem. Chem. Phys., 13, 4746 (2011).CrossRefGoogle Scholar
  47. 47.
    R. W. Godby, M. Schlüter and L. J. Sham. Phys. Rev. B, 37, 10159 (1988).CrossRefGoogle Scholar
  48. 48.
    R. Mohan, K. Krishnamoorthy and S. J. Kim, Chem. Phys. Lett., 83, 539 (2012).Google Scholar
  49. 49.
    R. Mohan, K. Krishnamoorthy and S.-J. Kim, Solid State Commun., 152, 375 (2012).CrossRefGoogle Scholar
  50. 50.
    T. Phan, Y. D. Zhang, D. S. Yang, N. X. Nghia, T. D. Thanh and S. C. Yu, Appl. Phys. Lett., 102, 072408 (2013).CrossRefGoogle Scholar
  51. 51.
    S. Dutta, S. Chattopadhyay, M. Sutradhar, A. Sarkar, M. Chakrabarti, D. Sanyal and D. Jana, J. Phys. Condens. Matter, 19, 236218 (2007).CrossRefGoogle Scholar
  52. 52.
    X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang and R. Liu, Sci. Rep., 1, 4:4596 (2014).Google Scholar
  53. 53.
    K. Laxman, T. Bora, S. H. Al-Harthi and J. Dutta, J. Nanomater. 2014, Article ID 919163, 1 (2014), dx. doi. org/10. 1155/2014/919163.Google Scholar
  54. 54.
    S. Danwittayakul, K. Lakshman, S. Al-Harthi and J. Dutta, Appl. Catal. A Gen., 471, 63 (2014).CrossRefGoogle Scholar
  55. 55.
    S. Divya, V. P. N. Nampoori, P. Radhakrishnan and A. Mujeeb, Appl. Phys. A Mater. Sci. Process., 114, 315 (2014).CrossRefGoogle Scholar
  56. 56.
    S. G. Lu, Y. J. Yu, C. L. Mak, K. H. Wong, L. Y. Zhang and X. Yao, Microelectronic Engineering, 66, 171 (2003).CrossRefGoogle Scholar
  57. 57.
    M. Basu, N. Garg and A. K. Ganguli, J. Mater. Chem. A, 2, 7517 (2014).CrossRefGoogle Scholar
  58. 58.
    S. Ma, J. Xue, Y. Zhou and Z. Zhang, J. Mater. Chem. A, 2, 7272 (2014).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2017

Authors and Affiliations

  1. 1.University of Petroleum and Energy Studies (UPES), VPO Bidholi, PO Prem NagarDehradunIndia
  2. 2.Thin Film Laboratory, Department of PhysicsIndian Institute of TechnologyNew DelhiIndia
  3. 3.Department of ChemistryGovernment Post Graduate CollegeGopeshwarIndia

Personalised recommendations