Korean Journal of Chemical Engineering

, Volume 34, Issue 2, pp 454–462 | Cite as

Optimization of fluoride adsorption onto natural and modified pumice using response surface methodology: Isotherm, kinetic and thermodynamic studies

  • Mohammad Hadi Dehghani
  • Maryam Faraji
  • Amir Mohammadi
  • Hossein Kamani
Separation Technology, Thermodynamics


Natural pumice (NP), FeCl3·6H2O modified pumice (FEMP) and hexadecyl trimethyl ammonium bromide (HDTM.Br) modified pumice (HMP) were used for fluoride adsorption. The effect of pH (3-11), initial concentration (2-15mg/L), and adsorbent dosage (0.2-0.8 g/L) on the defluoridation was optimized by using central composite design (CCD) in the response surface methodology (RSM). Results showed optimum condition in the pH=3, initial concentration=2mg/L, and adsorbent dosage=0.71, 0.75, 0.70 g/L with the maximum removal efficiency of 9.39, 76.45, and 95.09% for NP, FEMP, and HMP, respectively. The adsorption equilibrium and kinetic data was in good agreement with Freundlich and pseudo-second order reaction. Thermodynamic parameters indicated a non-spontaneous nature for NP and spontaneous nature for FEMP and HMP. Positive enthalpy illustrated the endothermic nature of the process. On the basis of results, modification of pumice led to an increase in the fluoride removal efficiency.


Thermodynamic Central Composite Design Response Surface Methodology Fluoride Adsorption Pumice Modification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. R. Lide, Crc handbook of chemistry and physics, CRC Press (2004).Google Scholar
  2. 2.
    WHO, Guidelines for drinking-water quality, World Health Organization (2011).Google Scholar
  3. 3.
    M. Islam and R. Patel, Chem. Eng. J., 169, 68 (2011).CrossRefGoogle Scholar
  4. 4.
    S. Ghorai and K. K. Pant, Sep. Purif. Technol., 42, 265 (2005).CrossRefGoogle Scholar
  5. 5.
    K. Hu and J. M. Dickson, J. Membr. Sci., 279, 529 (2006).CrossRefGoogle Scholar
  6. 6.
    D. Ghosh, C. R. Medhi and M. K. Purkait, Chemosphere, 73, 1393 (2008).CrossRefGoogle Scholar
  7. 7.
    P. Sehn, Desalination, 223, 73 (2008).CrossRefGoogle Scholar
  8. 8.
    N. Viswanathan and S. Meenakshi, J. Hazard. Mater., 162, 920 (2009).CrossRefGoogle Scholar
  9. 9.
    L. A. Richards, M. Vuachère and A. Schäfer, Desalination, 261, 331 (2010).CrossRefGoogle Scholar
  10. 10.
    T. Zhang, H. Yu, Y. Zhou, J. Rong, Z. Mei and F. Qiu, Korean J. Chem. Eng., 33, 720 (2016).CrossRefGoogle Scholar
  11. 11.
    R. Buamah, C. A. Oduro and M. H. Sadik, J. Environ. Chem. Eng., 4, 250 (2016).Google Scholar
  12. 12.
    Y. Zhang, D. Wang, B. Liu, X. Gao, W. Xu, P. Liang and Y. Xu, Am. J. Anal. Chem., 4, 48 (2013).CrossRefGoogle Scholar
  13. 13.
    M. Kitis, S. Kaplan, E. Karakaya, N. Yigit and G. Civelekoglu, Chemosphere, 66, 130 (2007).CrossRefGoogle Scholar
  14. 14.
    Gh. Asgari, B. Roshani and Gh. Ghanizadeh, J. Hazard. Mater., 217, 123 (2012).CrossRefGoogle Scholar
  15. 15.
    J. P. Wang, Y. Z. Chen, X. W. Ge and H. Q. Yu, Colloids Surf., A., 302, 204 (2007).Google Scholar
  16. 16.
    R. H. Myers, D. C. Montgomery and C. M. Anderson-Cook, Response surface methodology: Process and product optimization using designed experiments, John Wiley & Sons (2016).Google Scholar
  17. 17.
    K. Yaghmaeian, S. Silva Martinez, M. Hoseini and H. Amiri, Desalin. Water Treat., 57, 57 (2016).Google Scholar
  18. 18.
    M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni, R. El Hamri and A. Taitai, J. Saudi Chem. Soc., 19, 603 (2015).Google Scholar
  19. 19.
    A. Hassani, R. Darvishi Cheshmeh Soltani, M. Kiransan, S. Karaca, C. Karaca and A. Khataee, Korean J. Chem. Eng., 33, 178 (2016).CrossRefGoogle Scholar
  20. 20.
    J. D. Cui, Korean J. Chem. Eng., 27, 174 (2010).CrossRefGoogle Scholar
  21. 21.
    T. Tshukudu, H. Zheng, X. Hua, J. Yang, M. Tan, J. Ma, Y. Sun and G. Zhu, Korean J. Chem. Eng., 30, 649 (2013).CrossRefGoogle Scholar
  22. 22.
    J. Órfão, A. Silva, J. Pereira, S. Barata, I. Fonseca, P. Faria and M. Pereira, J. Colloid Interface Sci., 296, 480 (2006).CrossRefGoogle Scholar
  23. 23.
    R Core Team, A Language and Environment for Statistical Computing and R Foundation for Statistical Computing, Vienna, Austria (2015). Available from: <>.Google Scholar
  24. 24.
    R. V. Lenth, J. Stat. Software, 32, 1 (2009).CrossRefGoogle Scholar
  25. 25.
    APHA, AWWA and WEF, Standard methods for the examination of water and wastewater, American Public Health Association (2005).Google Scholar
  26. 26.
    Gh. Ghanizadeh and Gh. Asgari, React. Kinet. Mech. Cat., 102, 127 (2011).CrossRefGoogle Scholar
  27. 27.
    S. Wang and Z. Zhu, J. Hazard. Mater., 136, 946 (2006).CrossRefGoogle Scholar
  28. 28.
    M. Li, X. Zhu, F. Zhu, G. Ren, G. Cao and L. Song, Desalination, 271, 295 (2011).CrossRefGoogle Scholar
  29. 29.
    M. Noori Sepehr, V. Sivasankar, M. Zarrabi and M. S. Kumar, Chem. Eng. J., 228, 192 (2013).CrossRefGoogle Scholar
  30. 30.
    M. R. Samarghandi, M. Zarrabi, A. Amrane, M. M. Soori and M. Noori Sepehr, Environ. Eng. Manage. J., 12, 2137 (2013).Google Scholar
  31. 31.
    M. Malakootian, M. Moosazadeh, N. Yousefi and A. Fatehizadeh, Afr. J. Environ. Sci. Technol., 5, 299 (2011).Google Scholar
  32. 32.
    M. Noori Sepehr, M. Zarrabi, H. Kazemian, A. Amrane, K. Yaghmaian and H. R. Ghaffari, Appl. Surf. Sci., 274, 295 (2013).CrossRefGoogle Scholar
  33. 33.
    R. E. Grim, Clay mineralogy, McGraw-Hill Book Compony (1968).Google Scholar
  34. 34.
    H. Yamada, S. Yokoyama, Y. Watanabe, H. Uno and K. Tamura, Sci. Technol. Adv. Mater., 6, 394 (2005).CrossRefGoogle Scholar
  35. 35.
    J. R. Stevens, R. V. Siriwardane and J. Logan, Energy Fuels, 22, 3070 (2008).CrossRefGoogle Scholar
  36. 36.
    H. Naeimi, A. Mohajeri, L. Moradi and A. Rashidi, Appl. Surf. Sci., 256, 631 (2009).CrossRefGoogle Scholar
  37. 37.
    H. Nourmoradi, A. Ebrahimi, Y. Hajizadeh, S. Nemati and A. Mohammadi, Int. J. Pharm. Technol., 8, 13337 (2016).Google Scholar
  38. 38.
    M. Faraji, E. Abooi Mehrizi, M. Sadani, M. Karimaei, E. Ghahramani, K. Ghadiri and M. S. Taghizadeh, Int. J. Environ. Health Eng., 1, 26 (2012).CrossRefGoogle Scholar
  39. 39.
    A. El Nemr, J. Hazard. Mater., 161, 132 (2009).CrossRefGoogle Scholar
  40. 40.
    R. Arasteh, M. Masoumi, A. M. Rashidi, L. Moradi, V. Samimi and S. T. Mostafavi, Appl. Surf. Sci., 256, 4447 (2010).CrossRefGoogle Scholar
  41. 41.
    C. S. Sundaram, N. Viswanathan and S. Meenakshi, J. Hazard. Mater., 155, 206 (2008).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2017

Authors and Affiliations

  1. 1.Department of Environmental Health Engineering, School of Public HealthTehran University of Medical SciencesTehranIran
  2. 2.Center for Solid Waste Research, Institute for Environmental ResearchTehran University of Medical SciencesTehranIran
  3. 3.Department of Environmental Health Engineering, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
  4. 4.Health Promotion Research CenterZahedan University of Medical SciencesZahedanIran

Personalised recommendations