Advertisement

Korean Journal of Chemical Engineering

, Volume 34, Issue 1, pp 62–65 | Cite as

Harvesting of Scenedesmus obliquus cultivated in seawater using electro-flotation

  • Heewon Shin
  • Kyochan Kim
  • Joo-Young Jung
  • Sungchul Charles Bai
  • Yong Keun Chang
  • Jong-In Han
Energy

Abstract

Seawater, when supplemented to a growth medium, appears to stimulate auto-flocculation of a certain microalgae species like Scenedesmus obliquus and thus renders its harvesting easy. To make use of this unique response for the purpose of biomass harvesting, S. obliquus was grown in a seawater-added medium and then collected in electrochemically- mediated ways. Significantly higher harvesting efficiency and energy saving were observed with electroflotation (EF) than with electro-coagulation-flotation (ECF) and the standard BG11 medium. An optimal EF condition, the highest recovery rate with least energy use, was found with a supply of 0.5 A. Seawater amendment was most beneficial in a level of 10%. All this clearly showed that applying EF to cells cultivated in the seawater-supplemented medium is a promising harvesting means that enables one to obtain algae biomass without interfering with the downstream process of biodiesel production.

Keywords

Scenedesmus obliquus Harvest Seawater Electro-flotation (EF) Electro-coagulation-flotation (ECF) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Chisti, Biotechnol. Adv., 25, 294 (2007).CrossRefGoogle Scholar
  2. 2.
    A. L. Gonçalves, J. C. M. Pires and M. Simões, Environ. Chem. Lett., 11, 315 (2013).CrossRefGoogle Scholar
  3. 3.
    I. Rawat, R. Ranjith Kumar, T. Mutanda and F. Bux, Appl. Energy, 88, 3411 (2011).CrossRefGoogle Scholar
  4. 4.
    K. Skjanes, C. Rebours and P. Lindblad, Crit. Rev. Biotechnol., 33, 172 (2013).CrossRefGoogle Scholar
  5. 5.
    D. Vandamme, S.C. Pontes, K. Goiris, I. Foubert, L. J. Pinoy and K. Muylaert, Biotechnol. Bioeng., 108, 2320 (2011).CrossRefGoogle Scholar
  6. 6.
    L. Christenson and R. Sims, Biotechnol. Adv., 29, 686 (2011).CrossRefGoogle Scholar
  7. 7.
    V. H. Smith, B. S.M. Sturm, F. J. deNoyelles and S. A. Billings, Trends Ecol. Evol., 25, 301 (2010).CrossRefGoogle Scholar
  8. 8.
    M.K. Danquah, L. Ang, N. Uduman, N. Moheimani and G.M. Fordea, J. Chem. Technol. Biotechnol., 84, 1078 (2009).CrossRefGoogle Scholar
  9. 9.
    N. Uduman, Y. Qi, M. K. Danquah, G. M. Forde and A. Hoadley, J. Renewable Sustainable Energy, 2, 012701 (2010).CrossRefGoogle Scholar
  10. 10.
    A. Sukenik and G. Shelef, Biotechnol. Bioeng., 26, 142 (1984).CrossRefGoogle Scholar
  11. 11.
    Y. Li, M. Horsman, N. Wu, C.Q. Lan and N. Dubois-Calero, Biotechnol. Progr., 24, 815 (2008).Google Scholar
  12. 12.
    L. Brennan and P. Owende, Renewable Sustainable Energy Rev., 14, 557 (2010).CrossRefGoogle Scholar
  13. 13.
    P.M. Schenk, S.R. Thomas-Hall, E. Stephens, U. C. Marx, J.H. Mussgnug, C. Posten, O. Kruse and B. Hankamer, Bioenergy Res., 1, 20 (2008).CrossRefGoogle Scholar
  14. 14.
    M.Y.A. Mollah, R. Schennach, J.R. Parga and D. L. Cocke, J. Hazard. Mater., 84, 29 (2001).CrossRefGoogle Scholar
  15. 15.
    M.Y.A. Mollah, P. Morkovsky, J. A.G. Gomes, M. Kesmez, J. Parga and D. L. Cocke, J. Hazard. Mater., 114, 199 (2004).CrossRefGoogle Scholar
  16. 16.
    S. Salim, R. Bosma, M. H. Vermue and R. H. Wijffels, J. Appl. Phycol., 23, 849 (2011).CrossRefGoogle Scholar
  17. 17.
    R. Misra, A. Guldhe, P. Singh, I. Rawat and F. Bux, Chem. Eng. J., 255, 327 (2014).CrossRefGoogle Scholar
  18. 18.
    J.Y. Jung, H. Lee, W. S. Shin, M. G. Sung, J. H. Kwon and J.W. Yang, Bioprocess Biosyst. Eng., 38, 449 (2015).CrossRefGoogle Scholar
  19. 19.
    C.G. Alfafara, K. Nakano, N. Nomura, T. Igarashi and M. Matsumura, J. Chem. Technol. Biotechnol., 77, 871 (2002).CrossRefGoogle Scholar
  20. 20.
    S. Lee, W. S. Ang and M. Elimelech, Desalination, 187, 313 (2006).CrossRefGoogle Scholar
  21. 21.
    E. Poelman, N. DePauw and B. Jeurissen, Resour. Conserv. Recy., 19, 1 (1997).CrossRefGoogle Scholar
  22. 22.
    E.M. Grima, E. H. Belarbi, F. G. A. Fernandez, A.R. Medina and Y. Chisti, Biotechnol. Adv., 20, 491 (2003).CrossRefGoogle Scholar
  23. 23.
    J. Kim, B.G. Ryu, K. Kim, B.K. Kim, J. I. Han and J.W. Yang, Bioresour. Technol., 123, 164 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2017

Authors and Affiliations

  • Heewon Shin
    • 1
  • Kyochan Kim
    • 1
  • Joo-Young Jung
    • 2
    • 3
  • Sungchul Charles Bai
    • 2
  • Yong Keun Chang
    • 1
    • 3
  • Jong-In Han
    • 4
  1. 1.Department of Chemical and Biomolecular EngineeringKAISTDaejeonKorea
  2. 2.Department of Marine Bio-materials and Aquaculture/Feeds & Foods Nutrition Research CenterPukyong National UniversityBusanKorea
  3. 3.Advanced Biomass R&D CenterKAISTDaejeonKorea
  4. 4.Department of Civil and Environmental EngineeringKAISTDaejeonKorea

Personalised recommendations