Advertisement

Korean Journal of Chemical Engineering

, Volume 33, Issue 8, pp 2287–2290 | Cite as

Arm length dependency of Pt-decorated CdSe tetrapods on the performance of photocatalytic hydrogen generation

  • Younghun Sung
  • Jaehoon Lim
  • Jai Hyun Koh
  • Byoung Koun Min
  • Jeffrey Pyun
  • Kookheon Char
Rapid Communication

Abstract

Pt-decorated CdSe tetrapods with different arm lengths were tested for the photocatalytic hydrogen generation reaction. Well-defined CdSe tetrapods with controlled wurtzite arm lengths were synthesized by the continuous precursor injection (CPI) approach. Pt nanocrystals with an extremely small size of ∼1 nm were directly decorated on the overall surfaces of CdSe tetrapods. Ligand-exchanged Pt-decorated CdSe tetrapods with different arm lengths were employed as photocatalysts for photocatalytic hydrogen generation reaction in the presence of hole scavengers. Pt-decorated CdSe tetrapods with shorter arm length showed the highest photocatalytic efficiency, which is due to higher probability of charge separation.

Keywords

Colloidal Heterostructured Nanocrystal CdSe Tetrapod Photocatalytic Hydrogen Generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2016_200_MOESM1_ESM.pdf (52 kb)
Supplementary material, approximately 52.3 KB.

References

  1. 1.
    U. Banin, Y. Ben-Shahar and K. Vinokurov, Chem. Mater., 1, 97 (2013).CrossRefGoogle Scholar
  2. 2.
    H. Song, Acc. Chem. Res., 3, 491 (2015).CrossRefGoogle Scholar
  3. 3.
    E. Elmalem, A.E. Saunders, R. Costi, A. Salant and U. Banin, Adv. Mater.. 22. 4312 (2008).CrossRefGoogle Scholar
  4. 4.
    L. Amirav and A. P. Alivisatos, J. Phys. Chem. Lett., 7, 1051 (2010).CrossRefGoogle Scholar
  5. 5.
    K.P. Acharya, R.S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden and M. Zamkov, Nano Lett., 7, 2919 (2011).CrossRefGoogle Scholar
  6. 6.
    J.U. Bang, S. J. Lee, J. S. Jang, W. Choi and H. Song, J. Phys. Chem. Lett., 24, 2781 (2012).Google Scholar
  7. 7.
    F.F. Schweinberger, M. J. Berr, M. Döblinger, C. Wolff, K.E. Sanwald, A. S. Crampton, C. J. Ridge, F. Jäckel, J. Feldmann, M. Tschurl and U. Heiz, J. Am. Chem. Soc., 36, 13262 (2013).CrossRefGoogle Scholar
  8. 8.
    E. Conca, M. Aresti, M. Saba, M. F. Casula, F. Quochi, G. Mula, D. Loche, M.R. Kim, L. Manna, A. Corrias, A. Mura and G. Bongiovanni, Nanoscale, 4, 2238 (2014).CrossRefGoogle Scholar
  9. 9.
    K. Wu, Z. Chen, H. Lv, H. Zhu, C. L. Hill and T. Lian, J. Am. Chem. Soc., 21, 7708 (2014).CrossRefGoogle Scholar
  10. 10.
    W.D. Kim, J.-H. Kim, S. Lee, S. Lee, J.Y. Woo, K. Lee, W.-S. Chae, S. Jeong, W.K. Bae, J.A. McGuire, J.H. Moon, M.S. Jeong and D.C. Lee, Chem. Mater., 3, 962 (2016).CrossRefGoogle Scholar
  11. 11.
    P. Kalisman, Y. Nakibli and L. Amirav, Nano Lett.. 3, 1776 (2016).CrossRefGoogle Scholar
  12. 12.
    Y. Nakibli, P. Kalisman and L. Amirav, J. Phys. Chem. Lett., 12, 2265 (2015).CrossRefGoogle Scholar
  13. 13.
    M. J. Berr, F. F. Schweinberger, M. Döblinger, K. E. Sanwald, C. Wolff, J. Breimeier, A.S. Crampton, C. J. Ridge, M. Tschurl, U. Heiz, F. Jäckel and J. Feldmann, Nano Lett., 11, 5903 (2012).CrossRefGoogle Scholar
  14. 14.
    M. J. Berr, A. Vaneski, C. Mauser, S. Fischbach, A.S. Susha, A.L. Rogach, F. Jäckel and J. Feldmann, Small, 2, 291 (2012).CrossRefGoogle Scholar
  15. 15.
    J. Lim, W. K. Bae, K.U. Park, L. zur Borg, R. Zentel, S. Lee and K. Char, Chem. Mater., 8, 1443 (2012).Google Scholar
  16. 16.
    Y. Sung, J. Lim, J. H. Koh, L. J. Hill, B. K. Min, J. Pyun and K. Char, CrystEngCommun., 44, 8423 (2015).CrossRefGoogle Scholar
  17. 17.
    Y. Yang, K. Wu, Z. Chen, B.-S. Jeong and T. Lian, Chem. Phys., 471, 32 (2015).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2016

Authors and Affiliations

  1. 1.The National Creative Research Initiative (CRI) Center for Intelligent HybridsSeoul National UniversitySeoulKorea
  2. 2.The WCU Program of Chemical Convergence for Energy & Environment, School of Chemical & Biological EngineeringSeoul National UniversitySeoulKorea
  3. 3.Department of Chemistry & BiochemistryUniversity of ArizonaTucsonUSA
  4. 4.Clean Energy Research CenterKorea Institute of Science and Technology (KIST)SeoulKorea
  5. 5.Chemistry DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations