Advertisement

Korean Journal of Chemical Engineering

, Volume 33, Issue 11, pp 3175–3183 | Cite as

Kinetics and thermodynamics of paclitaxel extraction from plant cell culture

  • Tae Wan Kim
  • Jin-Hyun KimEmail author
Biotechnology

Abstract

We investigated the effect of temperature on the efficiency of paclitaxel extraction from biomass. In addition, kinetic and thermodynamic studies of this extraction process were performed. The concentration of extracted paclitaxel increased with increasing extraction temperature and extraction time. When the experimental data were applied to various kinetic models, the hyperbolic model (second-order model) was the most appropriate. The predictive model was developed to predict the concentration of extracted paclitaxel at different temperatures at a given time. The Gibbs free energy change was determined to be negative, while enthalpy change and entropy change were positive. These results indicate that this extraction process is spontaneous, endothermic, and irreversible.

Keywords

Paclitaxel Extraction Kinetics Predictive Model Thermodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. C. Wani, H. L. Taylor, M. E. Wall, P. Coggon and A.T. McPhail, J. Am. Chem. Soc., 93, 2325 (1971).CrossRefGoogle Scholar
  2. 2.
    P.B. Schiff, J. Fant and S.B. Horwitz, Nature, 277, 665 (1979).CrossRefGoogle Scholar
  3. 3.
    E. K. Rowinsky, L. A. Cazenave and R. C. Donehower, J. Natl. Cancer. Inst., 82, 1247 (1990).CrossRefGoogle Scholar
  4. 4.
    J. H. Kim, Korean J. Biotechnol. Bioeng., 21, 1 (2006).Google Scholar
  5. 5.
    K.V. Rao, J.B. Hanuman, C. Alvarez, M. Stoy, J. Juchum, R.M. Davies and R. Baxley, Pharm. Res., 12, 1003 (1995).CrossRefGoogle Scholar
  6. 6.
    E. Baloglu and D. G. Kingston, J. Nat. Prod., 62, 1068 (1999).CrossRefGoogle Scholar
  7. 7.
    H. K. Choi, J. S. Son, G. H. Na, S. S. Hong, Y. S. Park and J.Y. Song, Korean J. Plant Biotechnol., 29, 59 (2002).CrossRefGoogle Scholar
  8. 8.
    J. Y. Lee and J.H. Kim, Sep. Purif. Technol., 80, 240 (2011).CrossRefGoogle Scholar
  9. 9.
    J. E. Hyun and J.H. Kim, Korean J. Biotechnol. Bioeng., 23, 281 (2008).Google Scholar
  10. 10.
    J. H. Kim and S. S. Hong, Korean J. Biotechnol. Bioeng., 15, 346 (2000).Google Scholar
  11. 11.
    S. S. Hong, B. K. Song, J.H. Kim, C.B. Lim, H. S. Lee, K.W. Kim, I. S. Kang and H. B. Park, US Patent, 5,900,367 (1999).Google Scholar
  12. 12.
    S.H. Pyo, H.B. Park, B. K. Song, B. H. Han and J. H. Kim, Process Biochem., 39, 1985 (2004).CrossRefGoogle Scholar
  13. 13.
    Y.C. Cheung and J.Y. Wu, Biochem. Eng. J., 79, 214 (2013).CrossRefGoogle Scholar
  14. 14.
    Y.C. Cheung, K. C. Siu and J.Y. Wu, Food Bioprocess Technol., 6, 2659 (2013).CrossRefGoogle Scholar
  15. 15.
    S. Kitanović, D. Milenović and V. B. Veljković, Eng. J., 41, 1 (2008).Google Scholar
  16. 16.
    M.D. Kostić, N.M. Joković, O.S. Stamenković, K.M. Rajković, P. S. Milić and V.B. Veljković, Ind. Crops Prod., 52, 679 (2014).CrossRefGoogle Scholar
  17. 17.
    D.K. Saxena, S. K. Sharma and S. S. Sambi, Pol. J. Chem. Technol., 14, 29 (2012).Google Scholar
  18. 18.
    D.D. Paunović, S. S. Mitić, D.A. Kostić, M. N. Mitić, B.T. Stojanović and J. L. Pavlović, Adv. Technol., 3, 58 (2014).Google Scholar
  19. 19.
    O. L. Gamborg, R. A. Miller and K. Ojima, Exp. Cell Res., 50, 151 (1968).CrossRefGoogle Scholar
  20. 20.
    J.Y. Kim, C.L. Kim and C.H. Chung, J. Hazard. Mater., 94, 161 (2002).CrossRefGoogle Scholar
  21. 21.
    I. F. Paterson, B. Z. Chowdhry and S.A. Leharne, Chemosphere, 38, 3095 (1999).CrossRefGoogle Scholar
  22. 22.
    F.C. Wu, R.L. Tseng and R. S. Juang, Chem. Eng. J., 150, 366 (2009).CrossRefGoogle Scholar
  23. 23.
    A. Patricelli, A. Assogna, A. Casalaina, E. Emmi and G. Sodini, Riv. Ital. Sostanze Grasse, 56, 136 (1979).Google Scholar
  24. 24.
    G.C. So and D.G. Macdonald, Can. J. Chem. Eng., 64, 80 (1986).CrossRefGoogle Scholar
  25. 25.
    S. Meziane, H. Kadi and O. Lamrous, Grasas Aceites, 57, 175 (2006).Google Scholar
  26. 26.
    S. Meziane and H. Kadi, J. Am. Oil Chem. Soc., 85, 391 (2008).CrossRefGoogle Scholar
  27. 27.
    M. Peleg, J. Food Sci., 53, 1216 (1988).CrossRefGoogle Scholar
  28. 28.
    A. S. Olawale, Agric. Eng. Int. CIGR J., 15, 253 (2013).Google Scholar
  29. 29.
    S. Jokić, D. Velić, M. Bilić, A. Bucić-kojić, M. Planinć and S. Tomas, Czech J. Food Sci., 28, 206 (2010).Google Scholar
  30. 30.
    A. Bucić-kojić, M. Planinić, S. Tomas, M. Bilić and D. Velić, J. Food Eng., 81, 236 (2007).CrossRefGoogle Scholar
  31. 31.
    W. Qu, Z. Pan and H. Ma, J. Food Eng., 99, 16 (2010).CrossRefGoogle Scholar
  32. 32.
    L. Rakotondramasy-Rabesiaka, J. L. Havet, C. Porte and H. Fauduet, Sep. Purif. Technol., 54, 253 (2007).CrossRefGoogle Scholar
  33. 33.
    Y. S. Ho, H. A. Harouna-Oumarou, H. Fauduet and C. Porte, Sep. Purif. Technol., 45, 169 (2005).CrossRefGoogle Scholar
  34. 34.
    H. Topallar and Ü. Gecgel, Turk. J. Chem., 24, 247 (2000).Google Scholar
  35. 35.
    S.K. Amin, S. Hawash, G. E. Diwani and S. E. Rafei, J. Am. Sci., 6, 293 (2010).Google Scholar
  36. 36.
    R.C.A. Amarante, P.M. Oliveira, F.K. Schwantes and J.A. Morón-Villarreyes, Ind. Eng. Chem. Res., 53, 6824 (2014).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2016

Authors and Affiliations

  1. 1.Department of Chemical EngineeringKongju National UniversityCheonanKorea

Personalised recommendations