Korean Journal of Chemical Engineering

, Volume 33, Issue 11, pp 3222–3230 | Cite as

CO2 absorption characteristics of a piperazine derivative with primary, secondary, and tertiary amino groups

  • Jeong Ho Choi
  • Young Eun Kim
  • Sung Chan Nam
  • Soung Hee Yun
  • Yeo Il YoonEmail author
  • Jung-Hyun Lee
Separation Technology, Thermodynamics


Thermodynamic and kinetic data are important for designing a CO2 absorption process using aqueous amine solutions. A piperazine derivative, 1-(2-aminoethyl)piperazine (AEP), was blended with aqueous amine solutions due to its thermal degradation stability, high CO2 loading (mole of CO2-absorbed per mole of amine) and high solubility in water. In this study, the vapor liquid equilibrium (VLE), absorption rate, and species distribution of aqueous AEP solutions were studied to develop an optimum amine solution in a post-combustion capture process. The VLE and apparent absorption rate of the aqueous 30wt% AEP solution were measured using a batch-type reactor at 313.15, 333.15, and 353.15 K. The AEP exhibited approximately twice higher CO2 loading compared with monoethanolamine (MEA) at all temperatures. The apparent AEP absorption rate (k app =0.1 min−1) was similar to that of diethanolamine (DEA) at 333.15 K. Speciation of the CO2-absorbed AEP was analyzed using 13C NMR. Although AEP featured a primary amino group and secondary amino group, it did not form bicarbamate upon reaction with CO2 based on analysis results. AEP-1-carbamate was primarily formed by reactions between AEP and CO2 during the initial reaction. Bicarbonate species formed as the quantity of absorbed CO2 increased.


Carbon Dioxide CO2 Absorption Piperazine Derivatives Vapor Liquid Equilibrium CO2 Apparent Absorption Rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Albo, P. Luis and A. Irabin, Ind. Eng. Chem. Res., 49, 11045 (2010).CrossRefGoogle Scholar
  2. 2.
    G. Marland, T. A. Boden and R. J. Andres, Global, regional, and national CO2 emissions, Trends: A compendium of data on global change, Statistical Review of World Energy (2010).Google Scholar
  3. 3.
    R. Allam and O. Bolland, IPCC special report: Carbon dioxide capture and storage, IPCC Working Group III (2005).Google Scholar
  4. 4.
    R. Thiruvenkatachari, S. Su, H. An and X. X. Yu, Prog. Energy Combust. Sci., 35, 438 (2009).CrossRefGoogle Scholar
  5. 5.
    A. J. Applehy and F. R. Foulkes, Fuel Cell Handbook, Van Nostrand Reinhold, New York (1989).Google Scholar
  6. 6.
    C. Han, K. Graves, J. Neathery and K. Liu, Energy Environ. Res., 1, 67 (2011).CrossRefGoogle Scholar
  7. 7.
    Y. E. Kim, J. H. Choi, S. C. Nam and Y. I. Yoon, Ind. Eng. Chem. Res., 50, 9306 (2011).CrossRefGoogle Scholar
  8. 8.
    J. Davison, Energy, 32, 1163 (2007).CrossRefGoogle Scholar
  9. 9.
    F. Closmann, T. Nguyen and G. T. Rochelle, Energy Procedia., 1, 1351 (2009).CrossRefGoogle Scholar
  10. 10.
    D. Singh, E. Croiset, P. L. Douglas and M. A. Douglas, Energy Convers. Manage., 44, 3073 (2003).CrossRefGoogle Scholar
  11. 11.
    R. Davy, Energy Procedia, 1, 885 (2009).CrossRefGoogle Scholar
  12. 12.
    M. H. Li and K. P. Shen, Fluid Phase Equilib., 85, 129 (1993).CrossRefGoogle Scholar
  13. 13.
    M. D. Cheng, A. R. Caparanga, A. N. Soriano and M. H. Li, J. Chem. Thermodyn., 742, 342 (2010).CrossRefGoogle Scholar
  14. 14.
    F. Y. Jou, A. E. Mather and F. D. Otto, Can. J. Chem. Eng., 73, 140 (1995).CrossRefGoogle Scholar
  15. 15.
    A. Veawab, P. Tontiwachwuthikul and A. Chakma, Ind. Eng. Chem. Res., 38, 3917 (1999).CrossRefGoogle Scholar
  16. 16.
    A. Veawab, P. Toniwachwuthikul and S. D. Bhole, Ind. Eng. Chem. Res., 1, 36 (1997).Google Scholar
  17. 17.
    P. Singh, D. W. F. Brilman and M. J. Groeneveld, Energy Procedia, 1, 1257 (2009).CrossRefGoogle Scholar
  18. 18.
    Y. Du, L. Li, O. Namjoshi, A. K. Voice, N. a. Fine and G. T. Rochelle, Energy Procedia., 37, 1621 (2013).CrossRefGoogle Scholar
  19. 19.
    Y. Du and G. T. Rochelle, Energy Procedia, 63, 997 (2014).CrossRefGoogle Scholar
  20. 20.
    R. Zhang, E. P. Bonnin-Nartker, G. A. Farthing, L. Ji, M. G. Klidas, M. E. Nelson and L. M. Rimpf, Energy Procedia., 4, 1660 (2011).CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, Ind. Eng. Chem. Res., 50, 163 (2011).CrossRefGoogle Scholar
  22. 22.
    P. Jackson, K. J. Fisher and M. I. Attalla, Am. Soc. Mass. Spectrom., 22, 1420 (2011).CrossRefGoogle Scholar
  23. 23.
    M. S. Islam, R. Yusoff and B. S. Ali, Engineering e-Transaction., 2, 97 (2010).Google Scholar
  24. 24.
    M. Caplow, J. Am. Chem. Soc., 90, 6795 (1968).CrossRefGoogle Scholar
  25. 25.
    P. V. Danckwerts, Chem. Eng. Sci., 34, 443 (1979).CrossRefGoogle Scholar
  26. 26.
    H.-B. Xie, Y. Zhou, Y. Zhang and J. K. Johnson, J. Phys. Chem. A., 114, 11844 (2010).CrossRefGoogle Scholar
  27. 27.
    F. Barzagli, F. Mani and M. Peruzzini, Energy Environ. Sci., 2, 322 (2009).CrossRefGoogle Scholar
  28. 28.
    A. K. Chakraborty, K. B. Bischoff, G. Astarita and J. R. Damewood, J. Am. Chem. Soc., 110, 6947 (1988).CrossRefGoogle Scholar
  29. 29.
    D. Prakash, E. Vaidya and Y. Kenig, Chem. Eng. Technol., 30, 1467 (2007).CrossRefGoogle Scholar
  30. 30.
    F. Barzagli, F. Mani and M. Peruzzini, Inter. J. Greenhouse Gas Control, 5, 448 (2011).CrossRefGoogle Scholar
  31. 31.
    C. Perinu, B. Arstad and K.-J. Jens, Int. J. Greenhouse Gas Control, 20, 230 (2014).CrossRefGoogle Scholar
  32. 32.
    J. H. Choi, S. G. Oh, Y. E. Kim, Y. I. Yoon and S. C. Nam, Environ. Eng. Sci., 29, 328 (2012).CrossRefGoogle Scholar
  33. 33.
    I. H. Um, M. J. Kim, J. S. Min and D. S. Kwon, Bull. Korean Chem. Soc., 15, 523 (1997).Google Scholar
  34. 34.
    J. H. Choi, S. G. Oh, Y. I. Yoon, S. K. Jeong, K. R. Jang and S. C. Nam, J. Ind. Eng. Chem., 18, 568 (2012).CrossRefGoogle Scholar
  35. 35.
    A. F. Ciftja, A. H. Hartono and H. F. Svendsen, Int. J. Greenhouse Gas Control, 16, 224 (2013).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2016

Authors and Affiliations

  • Jeong Ho Choi
    • 1
    • 2
  • Young Eun Kim
    • 1
  • Sung Chan Nam
    • 1
  • Soung Hee Yun
    • 1
  • Yeo Il Yoon
    • 1
    Email author
  • Jung-Hyun Lee
    • 2
  1. 1.Green Energy Process Laboratory, Climate Change Research DivisionKorea Institute of Energy ResearchDaejeonKorea
  2. 2.Department of Chemical & Biological EngineeringKorea UniversitySeoulKorea

Personalised recommendations