Advertisement

Korean Journal of Chemical Engineering

, Volume 33, Issue 10, pp 2943–2952 | Cite as

A comparative study of CO2 and CH4 adsorption using activated carbon prepared from pine cone by phosphoric acid activation

  • Soodabeh Khalili
  • Behnam KhoshandamEmail author
  • Mohsen Jahanshahi
Separation Technology, Thermodynamics

Abstract

Adsorption of pure carbon dioxide and methane was examined on activated carbon prepared from pine cone by chemical activation with H3PO4 to determine the potential for the separation of CO2 from CH4. The prepared adsorbent was characterized by N2 adsorption-desorption, elemental analysis, FTIR, SEM and TEM. The equilibrium adsorption of CO2 and CH4 on AC was determined at 298, 308 and 318 K and pressure range of 1–16 bar. The experimental data of both gases were analyzed using Langmuir and Freundlich models. For CO2, the Langmuir isotherm presented a perfect fit, whereas the isotherm of CH4 was well described by Freundlich model. The selectivity of CO2 over CH4 by AC (CO2: CH4=50: 50, 298K, 5 bar), predicted by ideal adsorbed solution theory (IAST) model, was achieved at 1.68. These data demonstrated that pine cone-based AC prepared in this study can be successfully used in separation of CO2 from CH4.

Keywords

Activated Carbon Pine Cone Carbon Dioxide Methane IAST 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. H. Rada, H.R. Abid, J. Shang, Y. He, P. Webley, S. Liu, H. Sun and S. Wang, Fuel, 160, 318 (2015).CrossRefGoogle Scholar
  2. 2.
    S. Gilassi and N. Rahmanian, Appl. Math. Model., 39, 6599 (2015).CrossRefGoogle Scholar
  3. 3.
    H. Halim, A. Shariff and M. Bustam, Sep. Purif. Technol., 152, 87 (2015).CrossRefGoogle Scholar
  4. 4.
    S. S. A. Talesh, S. Fatemi, S. Hashemi and M. Ghasemi, Sep. Sci. Technol., 45, 1295 (2010).CrossRefGoogle Scholar
  5. 5.
    G.K. Parshetti, S. Chowdhury and R. Balasubramanian, Fuel, 148, 246 (2015).CrossRefGoogle Scholar
  6. 6.
    L. Guo, X. Hu, G. Hu, J. Chen, Z. Li, W. Dai, H. F. Dacosta and M. Fan, Fuel Process. Technol., 138, 663 (2015).CrossRefGoogle Scholar
  7. 7.
    J. L. Spenik, L. J. Shadle, R.W. Breault, J. S. Hoffman and M. L. Gray, Ind. Eng. Chem. Res., 54, 5388 (2015).CrossRefGoogle Scholar
  8. 8.
    B. S. Caglayan and A. E. Aksoylu, J. Hazard. Mater., 252-253, 19 (2013).CrossRefGoogle Scholar
  9. 9.
    Q. Zhou, Y.-F. Duan, Y.-G. Hong, C. Zhu, M. She, J. Zhang and H.-Q. Wei, Fuel Process. Technol., 134, 325 (2015).CrossRefGoogle Scholar
  10. 10.
    V.K. Gupta, D. Pathania, S. Sharma and P. Singh, J. Colloid Interface Sci., 401, 125 (2013).CrossRefGoogle Scholar
  11. 11.
    M. Momčilović, M. Purenović, A. Bojić, A. Zarubica and M. Ranđelović, Desalination, 276, 53 (2011).CrossRefGoogle Scholar
  12. 12.
    D. J. Malik, V. Strelko Jr., M. Streat and A. M. Puziy, Water Res., 36, 1527 (2002).CrossRefGoogle Scholar
  13. 13.
    V. Boonamnuayvitaya, C. Chaiya, W. Tanthapanichakoon and S. Jarudilokkul, Sep. Purif. Technol., 35, 11 (2004).CrossRefGoogle Scholar
  14. 14.
    A.C. Martins, O. Pezoti, A. L. Cazetta, K. C. Bedin, D.A. Yamazaki, G. F. Bandoch, T. Asefa, J.V. Visentainer and V.C. Almeida, Chem. Eng. J., 260, 291 (2015).CrossRefGoogle Scholar
  15. 15.
    W.C. Lim, C. Srinivasakannan and A. Al Shoaibi, J. Clean. Prod., 102, 501 (2015).CrossRefGoogle Scholar
  16. 16.
    T. Bohli, A. Ouederni, N. Fiol and I. Villaescusa, Comptes. Rendus. Chimie., 18, 88 (2015).CrossRefGoogle Scholar
  17. 17.
    S. Dawood, T. K. Sen and C. Phan, Water Air Soil Pollut., 225, 1 (2014).CrossRefGoogle Scholar
  18. 18.
    M. Brebu, S. Ucar, C. Vasile and J. Yanik, Fuel, 89, 1911 (2010).CrossRefGoogle Scholar
  19. 19.
    C. Saucier, M.A. Adebayo, E. C. Lima, R. Cataluña, P. S. Thue, L.D. Prola, M. Puchana-Rosero, F.M. Machado, F.A. Pavan and G. Dotto, J. Hazard. Mater., 289, 18 (2015).CrossRefGoogle Scholar
  20. 20.
    O. Pezoti, A.L. Cazetta, I.P. Souza, K.C. Bedin, A.C. Martins, T.L. Silva and V. C. Almeida, J. Ind. Eng. Chem., 20, 4401 (2014).CrossRefGoogle Scholar
  21. 21.
    W.C. Lim, C. Srinivasakannan and N. Balasubramanian, J. Anal. Appl. Pyrol., 88, 181 (2010).CrossRefGoogle Scholar
  22. 22.
    M. Açıkyıldız, A. Gürses, K. Güneş and D. Yalvaç, Appl. Surf. Sci., 354, 279 (2015).CrossRefGoogle Scholar
  23. 23.
    M. Kilic, E. Apaydin-Varol and A. E. Pütün, J. Hazard. Mater., 189, 397 (2011).CrossRefGoogle Scholar
  24. 24.
    S. Wang, T. Terdkiatburana and M. Tadé, Sep. Purif. Technol., 62, 64 (2008).CrossRefGoogle Scholar
  25. 25.
    S. Kaur, S. Rani, R. Mahajan, M. Asif and V. K. Gupta, J. Ind. Eng. Chem., 22, 19 (2015).CrossRefGoogle Scholar
  26. 26.
    Y. Keren, M. Borisover and N. Bukhanovsky, Chemosphere, 138, 462 (2015).CrossRefGoogle Scholar
  27. 27.
    M.A. Sheikh, M.M. Hassan and K. F. Loughlin, Gas Sep. Purif., 10, 161 (1996).CrossRefGoogle Scholar
  28. 28.
    R.-L. Tseng, P.-H. Wu, F.-C. Wu and R.-S. Juang, Chem. Eng. J., 237, 153 (2014).CrossRefGoogle Scholar
  29. 29.
    L. Kong, R. Zou, W. Bi, R. Zhong, W. Mu, J. Liu, R. P. Han and R. Zou, J. Mater. Chem. A, 2, 17771 (2014).CrossRefGoogle Scholar
  30. 30.
    J.-R. Li, J. Sculley and H.-C. Zhou, Chem. Rev., 112, 869 (2011).CrossRefGoogle Scholar
  31. 31.
    A. Myers and J. M. Prausnitz, AIChE J., 11, 121 (1965).CrossRefGoogle Scholar
  32. 32.
    C. Yu, M. G. Cowan, R.D. Noble and W. Zhang, Chem. Commun., 50, 5745 (2014).CrossRefGoogle Scholar
  33. 33.
    W. Luerruk, A. Shotipruk, V. Tantayakom, P. Prasitchoke and C. Muangnapoh, Front. Chem. Eng. China, 3, 52 (2009).CrossRefGoogle Scholar
  34. 34.
    S. Khalili, A.A. Ghoreyshi, M. Jahanshahi and K. Pirzadeh, CLEANSoil, Air, Water, 41, 939 (2013).Google Scholar
  35. 35.
    P. Justin, Hydrogen adsorption by alkali metal graphite intercalation compounds, Diss. California Institute of Technology (2010).Google Scholar
  36. 36.
    M. Loredo-Cancino, E. Soto-Regalado, F. Cerino-Córdova, R. García-Reyes, A. García-León and M. Garza-González, J. Environ. Manag., 125, 117 (2013).CrossRefGoogle Scholar
  37. 37.
    Z.-Y. Zhong, Q. Yang, X.-M. Li, K. Luo, Y. Liu and G.-M. Zeng, Ind. Crop. Prod., 37, 178 (2012).CrossRefGoogle Scholar
  38. 38.
    Y.-S. Bae, O.K. Farha, J.T. Hupp and R.Q. Snurr, J. Mater. Chem., 19, 2131 (2009).CrossRefGoogle Scholar
  39. 39.
    I. Prasetyo and D. Do, Chem. Eng. Sci., 53, 3459 (1998).CrossRefGoogle Scholar
  40. 40.
    S. Khalili, A. A. Ghoreyshi and M. Jahanshahi, Chem. Ind. Chem. Eng. Quart., 19, 153 (2013).CrossRefGoogle Scholar
  41. 41.
    M. Cinke, J. Li, C.W. Bauschlicher, A. Ricca and M. Meyyappan, Chem. Phys. Lett., 376, 761 (2003).CrossRefGoogle Scholar
  42. 42.
    M. H. Kalavathy, T. Karthikeyan, S. Rajgopal and L.R. Miranda, J. Colloid Interface Sci., 292, 354 (2005).CrossRefGoogle Scholar
  43. 43.
    T. Anirudhan and P. Radhakrishnan, Chem. Eng. J., 165, 142 (2010).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2016

Authors and Affiliations

  • Soodabeh Khalili
    • 1
  • Behnam Khoshandam
    • 1
    Email author
  • Mohsen Jahanshahi
    • 2
  1. 1.Faculty of Chemical, Petroleum and Gas EngineeringSemnan UniversitySemnanIran
  2. 2.Nanotechnology Institute, Chemical Engineering DepartmentBabol University of TechnologyBabolIran

Personalised recommendations