Advertisement

Korean Journal of Chemical Engineering

, Volume 33, Issue 7, pp 2097–2106 | Cite as

Coupling conversion of methanol and 1-butylene to propylene on HZSM-5 molecular sieve catalysts prepared by different methods

  • Ting Bai
  • Xin ZhangEmail author
  • Xiling Liu
  • Tengfei Chen
  • Wentao Fan
Environmental Engineering

Abstract

A series of HZSM-5 catalysts were synthesized by different methods. The physicochemical properties of the HZSM-5 catalysts were characterized by XRD, SEM, N2 isothermal adsorption-desorption, NH3-TPD, Py-IR and TGA, respectively. The results indicated that different preparation conditions lead to different morphologies, textures and the distribution of acid sites. The nanosized HZSM-5 catalysts exhibited better catalytic reactivity and coke capacity than the micro-sized HZSM-5 because nanosized HZSM-5 had larger specific surface area, higher pore volume, more exposed channels and more accessible acid sites. The large particles of NZ-3 in a reasonable range and the smooth surface were conducive to product diffusion; therefore, NZ-3 exhibited higher specific propylene yield and stability than the other nanosized catalysts. The moderate density and distribution of acid sites on NZ-3 also favored the formation of propylene.

Keywords

Methanol 1-Butylene, Propylene HZSM-5 Zeolite Morphology Acidity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Nowak, H. Günshel, A. Martin, K. Anders and B. Lücke, Proceedings of the 9th International Congress on Catalysis, Chemical Institute of Canada, Ottawa, Ontario, Canada, 4, 1735 (1988).Google Scholar
  2. 2.
    A.T. Aguayo, A.A. Gayubo, M. Gamero, M. Olazar and J. Bilbao, Ind. Eng. Chem. Res., 51, 13073 (2012).CrossRefGoogle Scholar
  3. 3.
    A. Martin, S. Nowak, B. Lücke and H.B. Günschel, Appl. Catal., 50, 149 (1989).CrossRefGoogle Scholar
  4. 4.
    Z. Wang, G. Jiang, Z. Zhao, X. Feng, A. Duan and J. Liu, Energy Fuels, 24, 758 (2010).CrossRefGoogle Scholar
  5. 5.
    T. Gong, X. Zhang, T. Bai, Q. Zhang, T. Lin, M. Qi, C. Duan and L. Zhang, Ind. Eng. Chem. Res., 51, 13589 (2012).CrossRefGoogle Scholar
  6. 6.
    B. Lücke, A. Martin, H. Günschel and S. Nowak, Micropor. Mesopor. Mater., 29, 145 (1999).CrossRefGoogle Scholar
  7. 7.
    Z. Gao, C. Cheng, C. Tan and H. Zhu, J. Fuel Chem. Technol., 23, 349 (1995). (In Chinese).Google Scholar
  8. 8.
    D. Mier, A.T. Aguayo, A.G. Gayubo, M. Olazar and J. Bilbao, Chem. Eng. J., 160, 760 (2010).CrossRefGoogle Scholar
  9. 9.
    D. Mier, A.T. Aguayo, A. G. Gayubo, M. Olazar and J. Bilbao, Appl. Catal. A: Gen., 383, 202 (2010).CrossRefGoogle Scholar
  10. 10.
    F. Chang, Y. Wei, X. Liu, Y. Zhao, L. Xu, Y. Sun, D. Zhang, Y. He and Z. Liu, Appl. Catal. A: Gen., 328, 163 (2007).CrossRefGoogle Scholar
  11. 11.
    B. Jiang, X. Feng, L. Yan, Y. Jiang, Z. Liao, J. Wang and Y. Yang, Ind. Eng. Chem. Res., 53, 4623 (2014).CrossRefGoogle Scholar
  12. 12.
    C. Song, S. Liu, X. Li, S. Xie, Z. Liu and L. Xu, Fuel Process. Technol., 126, 60 (2014).CrossRefGoogle Scholar
  13. 13.
    A. Martin, S. Nowak and B. Lücke, Appl. Catal., 57, 203 (1990).CrossRefGoogle Scholar
  14. 14.
    V.L. Erofeev, L. B. Shabalina, L.M. Koval and T.S. Minakova, Russ. J. Appl. Chem., 75, 752 (2002).CrossRefGoogle Scholar
  15. 15.
    G. Teng, G. Zhao, Z. Xie and Q. Chen, Chin. J. Catal., 25, 602 (2004).Google Scholar
  16. 16.
    L. Wu, Z. Liu, L. Xia, M. Qiu, X. Liu, H. Zhu and Y. Sun, Chin. J. Catal., 34, 1348 (2013).CrossRefGoogle Scholar
  17. 17.
    M. Firoozi, M. Baghalha and M. Asadi, Catal. Comm., 10, 1582 (2009).CrossRefGoogle Scholar
  18. 18.
    X. Wang, X. Gao, M. Dong, H. Zhao and W. Huang. J. Energy Chem., 24, 490 (2015).CrossRefGoogle Scholar
  19. 19.
    J. Aguado, D.P. Serrano, J.M. Escola and J.M. Rodríguez, Micropor. Mesopor. Mater., 75, 41 (2004).CrossRefGoogle Scholar
  20. 20.
    Q. Yu, C. Cui, Q. Zhang, J. Chen, Y. Li, J. Sun, C. Li, Q. Cui, C. Yang and H. Shan, J. Energy Chem., 22, 761 (2013).CrossRefGoogle Scholar
  21. 21.
    C. Duan, X. Zhang, R. Zhou, Y. Hua, L. Zhang and J. Chen, Fuel Process. Technol., 108, 31 (2013).CrossRefGoogle Scholar
  22. 22.
    W. Zhang, E.C. Burckle and P.G. Smirniotis, Micropor. Mesopor. Mater., 33, 173 (1999).CrossRefGoogle Scholar
  23. 23.
    Q. Xin and M. Luo, Research Methods for Modern Catalysis, Sci. Press, Beijing (2004).Google Scholar
  24. 24.
    X. Zhang, J. Zhong, J. Wang, L. Zhang and J. Gao, Micropor. Mesopor. Mater., 108, 13 (2008).CrossRefGoogle Scholar
  25. 25.
    C.A. Emeis, J. Catal., 141, 347 (1993).CrossRefGoogle Scholar
  26. 26.
    E. Epelde, M. Ibañez, A.T. Aguayo, A.G. Gayubo, J. Bilbao and P. Castaño, Micropor. Mesopor. Mater., 195, 284 (2014).CrossRefGoogle Scholar
  27. 27.
    S. Aghamohammadi and M. Haghighi, Chem. Eng. J., 264, 359 (2015).CrossRefGoogle Scholar
  28. 28.
    A. Lucas, P. Canizares, A. Durán and A. Carrero, Appl. Catal. A: Gen., 156, 299 (1997).CrossRefGoogle Scholar
  29. 29.
    M. Guisnet and P. Magnoux, Appl. Catal., 54, 1 (1989).CrossRefGoogle Scholar
  30. 30.
    L. Sun, X.S. Wang, J.C. Li, A. Ma and H.C. Guo, Reac. Kinet. Mech. Catal., 102, 235 (2011).CrossRefGoogle Scholar
  31. 31.
    G. Qi, Z. Xie, W. Yang, S. Zhong, H. Liu, C. Zhang and Q. Chen, Fuel Process. Technol., 88, 437 (2007).CrossRefGoogle Scholar
  32. 32.
    L. Tosheva and V.P. Valtchev, Chem. Mater., 17, 2494 (2005).CrossRefGoogle Scholar
  33. 33.
    S.D. Kim, S.H. Noh, J.W. Park and W.J. Kim, Micropor. Mesopor. Mater., 92, 181 (2006).CrossRefGoogle Scholar
  34. 34.
    P. Zhang, X. Guo, H. Guo and X. Wang, J. Mol. Catal. A: Chem., 261, 139 (2007).CrossRefGoogle Scholar
  35. 35.
    D.P. Serrano, R.V. Grieken, J.A. Melero, A. García and C. Vargas, J. Mol. Catal. A: Chem., 318, 68 (2010).CrossRefGoogle Scholar
  36. 36.
    K. Tanabe, M. Misono, Y. Ono and H. Hattori, New Solid Acidsand Bases their Catalytic Properties, Kodausha, Tokyo (1989).Google Scholar
  37. 37.
    Y.V. Kissin, Catal. Rev., 43, 85 (2001).CrossRefGoogle Scholar
  38. 38.
    A. Corma and A.V. Orchillés, Micropor. Mesopor. Mater., 35–36, 21 (2000).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2016

Authors and Affiliations

  • Ting Bai
    • 1
  • Xin Zhang
    • 1
    Email author
  • Xiling Liu
    • 1
  • Tengfei Chen
    • 1
  • Wentao Fan
    • 1
  1. 1.School of Chemical EngineeringNorthwest UniversityXi’anShaanxi, China

Personalised recommendations