Korean Journal of Chemical Engineering

, Volume 33, Issue 5, pp 1749–1755 | Cite as

Generation of micro- and nano-bubbles in water by dissociation of gas hydrates

Fluidization, Particle Technology

Abstract

Gas hydrate crystals have a structure in which one molecule is enclathrated in a cage of water molecules. When such a crystal dissociates in water, each enclathrated molecule, generally vapor at standard temperature and pressure, directly dissolves into the water. After the solution is supersaturated, excess gas molecules from further dissociation start forming small bubbles called micro- and nano-bubbles (MNBs). However, it is difficult to identify such small bubbles dispersed in liquid because they are smaller than a microscope's optical resolution. To confirm the formation of MNBs after gas hydrate dissociation, we used a transmission electron microscope (TEM) to analyze freeze-fracture replicas of CH4-hydrate dissociation solution. The TEM images indicate the existence of MNBs in the solution, with a number concentration similar to that from a commercially supplied generator. Raman spectroscopic measurements on the CH4-hydrate dissociated solution were then used to confirm that the MNBs contain CH4 vapor, and to estimate experimentally the inner pressure of the CH4 MNBs. These results suggest that the dissociation of gas hydrate crystals in water is a simple, effective method to obtain MNB solution. We then discuss how such MNBs may play a key role in the memory effect of gas-hydrate recrystallization.

Keywords

Microbubble Nanobubble Gas Hydrate Dissociation Freeze Fracture Replica Bubble Pressure Memory Effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Oshita and T. Uchida, Basic Characterization of Nanobubbles and Their Potential Application, in “Bio-Nanotechnology: A Revolution in Biomedical Sciences, & Human Health (Eds. by D. Bagchi, M. Bagchi, H. Moriyama, F. Shahidi)”, Chap 29, Wiley, 506–516 (2013).CrossRefGoogle Scholar
  2. 2.
    H. Tsuge, The latest technology on microbubbles and nanobubbles (in Japanese), in Maikurobaburu no tokusei (Special characteristics of microbubbles), Chap. 2, Tokyo, CMC, 15–30 (2007).Google Scholar
  3. 3.
    R. Clift, J.R. Grace and M.E. Weber, Bubbles, Drops and Particles, Mineola, Dover Pub. (2005).Google Scholar
  4. 4.
    F.Y. Ushikubo, Fundamental studies on the state of water with the generation of micro and nano-bubbles (PhD thesis), Univ Tokyo, (2010).Google Scholar
  5. 5.
    S. Ljunggren and J. C. Eriksson, Colloids Surf. A Physicochem. Eng. Aspects, 129–130, 151 (1997).Google Scholar
  6. 6.
    M. Takahashi, Application to the agricultural and food fields of the microbubbles and nanobubbles (in Japanese), Food Technology (FOO-TECH) Forum, 2006 Japanese Society of Agricultural Machinery (JSAM) Symposium, 24–31 (2006).Google Scholar
  7. 7.
    M. Switkes and J.W. Ruberti, Appl. Phys. Lett., 48, 4759 (2004).CrossRefGoogle Scholar
  8. 8.
    E. Dressaire, R. Bee, A. Lips and H.A. Stone, Science, 320, 1198 (2008).CrossRefGoogle Scholar
  9. 9.
    K. Ohgaki, N.Q. Khanh, Y. Joden, A. Tsuji and T. Nakagawa, Chem. Eng. Sci., 65, 1296 (2010).CrossRefGoogle Scholar
  10. 10.
    T. Uchida, S. Oshita, M. Ohmori, T. Tsuno, K. Soejima, S. Shinozaki, Y. Take and K. Misuda, Nanoscale Res. Lett., 6, 295 (2011).CrossRefGoogle Scholar
  11. 11.
    S. Liu, S.Oshita, Y.Makino, Q.Wang, Y.Kawagoe and T.Uchida, ACS Sustainable Chemistry & Engineering, In Press.Google Scholar
  12. 12.
    E.D. Sloan, Hydrate Engineering, SPE monograph 21, Richardson, TX: SPE Inc. (2000).Google Scholar
  13. 13.
    H. Mimachi, S. Takeya, A. Yoneyama, K. Hyodo, T. Takeda, Y. Gotoh and T. Murayama, Chem. Eng. Sci., 118, 208 (2014).CrossRefGoogle Scholar
  14. 14.
    M. Kurihara, A. Sato, H. Ouchi, H. Narita, Y. Masuda, T. Saeki and T. Fujii, SPE Reservoir Evaluation Eng., 12, 477 (2009).CrossRefGoogle Scholar
  15. 15.
    Y.Masuda, S.Nagakubo, M.Satoh and T.Uchida, Methane Hydrates, in World Scientific Handbook of Energy, Chapter 10, World Scientific Pub. Co., In Press.Google Scholar
  16. 16.
    J.S. Parent and P.R. Bishnoi, Chem. Eng. Commun., 144, 51 (1996).CrossRefGoogle Scholar
  17. 17.
    S. Takeya, A. Hori, T. Hondoh and T. Uchida, J. Phys. Chem. B, 104, 4164 (2000).CrossRefGoogle Scholar
  18. 18.
    E.D. Sloan and C. A. Koh, Clathrate Hydrate of Natural Gases, 3rd Ed., Boca Raton, FL, CRC Press (2007).CrossRefGoogle Scholar
  19. 19.
    P.M. Rodger, Ann. N.Y. Acad. Sci., 912, 474 (2000).CrossRefGoogle Scholar
  20. 20.
    S.A. Bagherzadeh, P. Englezos, S. Alavi and J.A. Ripmeester, J.Chem. Thermodyn., 44, 13 (2012).CrossRefGoogle Scholar
  21. 21.
    S.A. Bagherzadeh, S. Alavi, J.A. Ripmeester and P. Englezos, Fluid Phase Equilib., 358, 114 (2013).CrossRefGoogle Scholar
  22. 22.
    S.A. Bagherzadeh, S. Alavi, J.A. Ripmeester and P. Englezos, J.Chem. Phys., 142, 214701 (2015).CrossRefGoogle Scholar
  23. 23.
    T. Yagasaki M. Matsumoto Y. Andoh S. Okazaki and H. Tanaka, J. Phys. Chem. B, 118, 1900 (2014).CrossRefGoogle Scholar
  24. 24.
    F. Lin, A.K. Sum and R.J. Bodnar, J. Raman Spectrosc., 38, 1510 (2007).CrossRefGoogle Scholar
  25. 25.
    T. Uchida, T. Hirano, T. Ebinuma, H. Narita, K. Gohara, S. Mae and R. Matsumoto, AIChE J., 45, 2641 (1999).CrossRefGoogle Scholar
  26. 26.
    T. Uchida, M. Nagayama, T. Shibayama and K. Gohara, J. Cryst. Growth, 299, 125 (2007).CrossRefGoogle Scholar
  27. 27.
    A.K. Sum, R.C. Burruss and E.D. Sloan, J. Phys. Chem. B, 101, 7371 (1997).CrossRefGoogle Scholar
  28. 28.
    T. Uchida, R. Okabe, K. Gohara, S. Mae, Y. Seo, H. Lee, S. Takeya, J. Nagao, T. Ebinuma and H. Narita, Can. J. Phys., 81, 359 (2003).Google Scholar
  29. 29.
    D. Katsuki, R. Ohmura, T. Ebinuma and H. Narita, J. Appl. Phys., 104, 083514 (2008).CrossRefGoogle Scholar
  30. 30.
    Jpn. Soc. Mech. Eng., JSME Data book: Thermophysical Properties of Fluids, Maruzen, Tokyo, 255 (1983).Google Scholar
  31. 31.
    S. Khosharay and F. Varaminian, Int. J. Refrigeration, 47, 26 (2014).CrossRefGoogle Scholar
  32. 32.
    International Chemical Safety Cards ICSC0291.Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2016

Authors and Affiliations

  • Tsutomu Uchida
    • 1
  • Kenji Yamazaki
    • 1
  • Kazutoshi Gohara
    • 1
  1. 1.Division of Applied Physics, Faculty of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations