Korean Journal of Chemical Engineering

, Volume 33, Issue 4, pp 1125–1133 | Cite as

Recent developments and applications of bioinspired silicification

  • Byung Hoon Jo
  • Chang Sup Kim
  • Yun Kee Jo
  • Hogyun Cheong
  • Hyung Joon Cha
Invited Review Paper

Abstract

Bioinspired synthesis of silica has attracted attention from a wide range of researchers as novel route for fabrication of various nanomaterials. Proteins including silaffins and silicateins as well as polyamines from marine diatoms and sponges are key biomolecules in these biomimetic silicification processes. These methods allow silica mineralization from various silica precursors under mild, biologically compatible conditions in an unprecedentedly fast and facile manner. Notably, the silica polycondensation entails the concomitant encapsulation of other molecules in the reaction solutions. Due to the efficient encapsulation and synergetic effects brought by the encapsulated molecules and the characteristics of biomimetic silica synthesis as well as the mechanical and chemical properties of silica itself, the silica- biomolecule nanocomposites have broad applications in biocatalysis, biosensor, and biomedical areas. Introduction and combination of novel template, precursors, inorganics, or enzymes with the previously used strategies will allow construction of more efficient, purpose-optimized silica nanomaterials with controlled size, composition, and morphology.

Keywords

Biosilica Biosilicification Silaffin Silicatein Polyamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. W. P. Foo, S. V. Patwardhan, D. J. Belton, B. Kitchel, D. Anastasiades, J. Huang, R. R. Naik, C. C. Perry and D. L. Kaplan, Proc. Natl. Acad. Sci., 103, 9428 (2006).CrossRefGoogle Scholar
  2. 2.
    I. A. Rahman and V. Padavettan, J. Nanomater., 132424 (2012).Google Scholar
  3. 3.
    S. V. Patwardhan, Chem. Commun., 47, 7567 (2011).CrossRefGoogle Scholar
  4. 4.
    D. J. Belton, O. Deschaume and C. C. Perry, FEBS J., 279, 1710 (2012).CrossRefGoogle Scholar
  5. 5.
    U. Schlossmacher, M. Wiens, H. C. Schroder, X. H. Wang, K. P. Jochum and W. E. G. Muller, FEBS J., 278, 1145 (2011).CrossRefGoogle Scholar
  6. 6.
    K. Shimizu, J. Cha, G. D. Stucky and D. E. Morse, Proc. Natl. Acad. Sci., 95, 6234 (1998).CrossRefGoogle Scholar
  7. 7.
    N. Kroger, R. Deutzmann, C. Bergsdorf and M. Sumper, Proc. Natl. Acad. Sci., 97, 14133 (2000).CrossRefGoogle Scholar
  8. 8.
    N. Kroger and N. Poulsen, Annu. Rev. Genet., 42, 83 (2008).CrossRefGoogle Scholar
  9. 9.
    F. M. Fernandes, T. Coradin and C. Aime, Nanomaterials, 4, 792 (2014).CrossRefGoogle Scholar
  10. 10.
    T. Coradin, A. Coupe and J. Livage, Colloids Surf., B, 29, 189 (2003).CrossRefGoogle Scholar
  11. 11.
    M. Hartmann, Chem. Mater., 17, 4577 (2005).CrossRefGoogle Scholar
  12. 12.
    M. Ramanathan, H. R. Luckarift, A. Sarsenova, J. R. Wild, E. K. Ramanculov, E. V. Olsen and A. L. Simonian, Colloids Surf., B, 73, 58 (2009).CrossRefGoogle Scholar
  13. 13.
    C. Zhang, K. L. Yan, C. Y. Hu, Y. L. Zhao, Z. Chen, X. M. Zhu and M. Moller, J. Mater. Chem. B, 3, 1261 (2015).CrossRefGoogle Scholar
  14. 14.
    M. Sumper, S. Lorenz and E. Brunner, Angew. Chem. Int. Ed., 42, 5192 (2003).CrossRefGoogle Scholar
  15. 15.
    E. Brunner, K. Lutz and M. Sumper, Phys. Chem. Chem. Phys., 6, 854 (2004).CrossRefGoogle Scholar
  16. 16.
    N. Kroger, S. Lorenz, E. Brunner and M. Sumper, Science, 298, 584 (2002).CrossRefGoogle Scholar
  17. 17.
    C. C. Lechner and C. F. W. Becker, Bioorg. Med. Chem., 21, 3533 (2013).CrossRefGoogle Scholar
  18. 18.
    J. N. Cha, K. Shimizu, Y. Zhou, S. C. Christiansen, B. F. Chmelka, G. D. Stucky and D. E. Morse, Proc. Natl. Acad. Sci., 96, 361 (1999).CrossRefGoogle Scholar
  19. 19.
    M. M. Murr and D. E. Morse, Proc. Natl. Acad. Sci., 102, 11657 (2005).CrossRefGoogle Scholar
  20. 20.
    X. H. Wang, H. C. Schroder and W. E. G. Muller, Trends Biotechnol., 32, 441 (2014).CrossRefGoogle Scholar
  21. 21.
    H. R. Luckarift, J. C. Spain, R. R. Naik and M. O. Stone, Nat. Biotechnol., 22, 211 (2004).CrossRefGoogle Scholar
  22. 22.
    N. Poulsen and N. Kroger, J. Biol. Chem., 279, 42993 (2004).CrossRefGoogle Scholar
  23. 23.
    N. Kroger, R. Deutzmann and M. Sumper, J. Biol. Chem., 276, 26066 (2001).CrossRefGoogle Scholar
  24. 24.
    I. E. Pamirsky and K. S. Golokhvast, Mar. Drugs, 11, 3155 (2013).CrossRefGoogle Scholar
  25. 25.
    N. Kroger, R. Deutzmann and M. Sumper, Science, 286, 1129 (1999).CrossRefGoogle Scholar
  26. 26.
    L. L. S. Canabady-Rochelle, D. J. Belton, O. Deschaume, H. A. Currie, D. L. Kaplan and C. C. Perry, Biomacromolecules, 13, 683 (2012).CrossRefGoogle Scholar
  27. 27.
    L. L. Brott, R. R. Naik, D. J. Pikas, S. M. Kirkpatrick, D. W. Tomlin, P. W. Whitlock, S. J. Clarson and M. O. Stone, Nature, 413, 291 (2001).CrossRefGoogle Scholar
  28. 28.
    M. Sumper, Science, 295, 2430 (2002).CrossRefGoogle Scholar
  29. 29.
    M. Sumper, Angew. Chem. Int. Ed., 43, 2251 (2004).CrossRefGoogle Scholar
  30. 30.
    L. Betancor and H. R. Luckarift, Trends Biotechnol., 26, 566 (2008).CrossRefGoogle Scholar
  31. 31.
    C. Forsyth, T. W. S. Yip and S. V. Patwardhan, Chem. Commun., 49, 3191 (2013).CrossRefGoogle Scholar
  32. 32.
    K. H. Min, R. G. Son, M. R. Ki, Y. S. Choi and S. P. Pack, Chemosphere, 143, 128 (2016).CrossRefGoogle Scholar
  33. 33.
    B. H. Jo, J. H. Seo, Y. J. Yang, K. Baek, Y. S. Choi, S. P. Pack, S. H. Oh and H. J. Cha, ACS Catal., 4, 4332 (2014).CrossRefGoogle Scholar
  34. 34.
    W. D. Marner, A. S. Shaikh, S. J. Muller and J. D. Keasling, Biotechnol. Prog., 25, 417 (2009).CrossRefGoogle Scholar
  35. 35.
    J. Y. Wang, H. R. Yu, R. Xie, X. J. Ju, Y. L. Yu, L. Y. Chu and Z. Zhang, AIChE J., 59, 380 (2013).CrossRefGoogle Scholar
  36. 36.
    G. C. Chen, I. C. Kuan, J. R. Hong, B. H. Tsai, S. L. Lee and C. Y. Yu, Biotechnol. Lett., 33, 525 (2011).CrossRefGoogle Scholar
  37. 37.
    S. Emond, D. Guieysse, S. Lechevallier, J. Dexpert-Ghys, P. Monsan and M. Remaud-Simeon, Chem. Commun., 48, 1314 (2012).CrossRefGoogle Scholar
  38. 38.
    C. Forsyth and S. V. Patwardhan, J. Mater. Chem. B, 1, 1164 (2013).CrossRefGoogle Scholar
  39. 39.
    J. F. Shi, L. Zhang and Z. Y. Jiang, ACS Appl. Mater. Interfaces, 3, 881 (2011).CrossRefGoogle Scholar
  40. 40.
    J. F. Shi and Z. Y. Jiang, J. Mater. Chem. B, 2, 4435 (2014).CrossRefGoogle Scholar
  41. 41.
    X. L. Wang, Z. Li, J. F. Shi, H. Wu, Z. Y. Jiang, W. Y. Zhang, X. K. Song and Q. H. Ai, ACS Catal., 4, 962 (2014).CrossRefGoogle Scholar
  42. 42.
    M. Castellana, M. Z. Wilson, Y. F. Xu, P. Joshi, I. M. Cristea, J. D. Rabinowitz, Z. Gitai and N. S. Wingleen, Nat. Biotechnol., 32, 1011 (2014).CrossRefGoogle Scholar
  43. 43.
    N. Poulsen, C. Berne, J. Spain and N. Kroger, Angew. Chem. Int. Edit., 46, 1843 (2007).CrossRefGoogle Scholar
  44. 44.
    V. C. Sheppard, A. Scheffel, N. Poulsen and N. Kroger, Appl. Environ. Microb., 78, 211 (2012).CrossRefGoogle Scholar
  45. 45.
    W. E. G. Muller, S. Engel, X. H. Wang, S. E. Wolf, W. G. Tremel, N. L. Thakur, A. Krasko, M. Divekar and H. C. Schroder, Biomaterials, 29, 771 (2008).CrossRefGoogle Scholar
  46. 46.
    C. F. Guan, G. Wang, J. Ji, J. H. Wang, H. Y. Wang and M. Tan, J. Sol-Gel Sci. Technol., 48, 369 (2008).CrossRefGoogle Scholar
  47. 47.
    S. H. Yang, K. B. Lee, B. Kong, J. H. Kim, H. S. Kim and I. S. Choi, Angew. Chem. Int. Ed., 48, 9160 (2009).CrossRefGoogle Scholar
  48. 48.
    H. Lee, D. Hong, J. Y. Choi, J. Y. Kim, S. H. Lee, H. M. Kim, S. H. Yang and I. S. Choi, Chem-Asian J., 10, 129 (2015).CrossRefGoogle Scholar
  49. 49.
    S. H. Yang, E. H. Ko, Y. H. Jung and I. S. Choi, Angew. Chem. Int. Edit., 50, 6115 (2011).CrossRefGoogle Scholar
  50. 50.
    J. H. Park, I. S. Choi and S. H. Yang, Chem. Commun., 51, 5523 (2015).CrossRefGoogle Scholar
  51. 51.
    W. Xiong, Z. Yang, H. L. Zhai, G. C. Wang, X. R. Xu, W. M. Ma and R. K. Tang, Chem. Commun., 49, 7525 (2013).CrossRefGoogle Scholar
  52. 52.
    E. H. Ko, Y. Yoon, J. H. Park, S. H. Yang, D. Hong, K. B. Lee, H. K. Shon, T. G. Lee and I. S. Choi, Angew. Chem. Int. Ed., 52, 12279 (2013).CrossRefGoogle Scholar
  53. 53.
    J. Lee, J. Choi, J. H. Park, M. H. Kim, D. Hong, H. Cho, S. H. Yang and I. S. Choi, Angew. Chem. Int. Ed., 53, 8056 (2014).CrossRefGoogle Scholar
  54. 54.
    G. C. Wang, H. J. Wang, H. Y. Zhou, Q. G. Nian, Z. Y. Song, Y. Q. Deng, X. Wang, S. Y. Zhu, X. F. Li, C. F. Qin and R. K. Tang, ACS Nano, 9, 799 (2015).CrossRefGoogle Scholar
  55. 55.
    C. Jeffryes, S. N. Agathos and G. Rorrer, Curr. Opin. Biotechnol., 33, 23 (2015).CrossRefGoogle Scholar
  56. 56.
    K. E. Marshall, E. W. Robinson, S. M. Hengel, L. Pasa-Tolic and G. Roesijadi, PLoS One, 7, e33771 (2012).CrossRefGoogle Scholar
  57. 57.
    W. R. Yang, P. J. Lopez and G. Rosengarten, Analyst, 136, 42 (2011).CrossRefGoogle Scholar
  58. 58.
    N. Adanyi, Z. Bori, I. Szendro, K. Erdelyi, X. H. Wang, H. C. Schroder and W. E. Muller, New Biotechnol., 30, 493 (2013).CrossRefGoogle Scholar
  59. 59.
    N. Adanyi, Z. Bori, I. Szendro, K. Erdelyi, X. H. Wang, H. C. Schroder and W. E. G. Muller, Sensor Actuat. B-Chem., 177, 1 (2013).CrossRefGoogle Scholar
  60. 60.
    H. R. Luckarift, R. Greenwald, M. H. Bergin, J. C. Spain and G. R. Johnson, Biosens. Bioelectron., 23, 400 (2007).CrossRefGoogle Scholar
  61. 61.
    N. A. Pchelintsev, F. Neville and P. A. Millner, Sensor Actuat. BChem., 135, 21 (2008).CrossRefGoogle Scholar
  62. 62.
    V. Vamvakaki, M. Hatzimarinaki and N. Chaniotakis, Anal. Chem., 80, 5970 (2008).CrossRefGoogle Scholar
  63. 63.
    M. Hatzimarinaki, V. Vamvakaki and N. Chaniotakis, J. Mater. Chem., 19, 428 (2009).CrossRefGoogle Scholar
  64. 64.
    F. Neville, N. A. Pchelintsev, M. J. F. Broderick, T. Gibson and P. A. Millner, Nanotechnology, 20, 055612 (2009).CrossRefGoogle Scholar
  65. 65.
    P. Zamora, A. Narvaez and E. Dominguez, Bioelectrochemistry, 76, 100 (2009).CrossRefGoogle Scholar
  66. 66.
    R. Buiculescu, M. Hatzimarinaki and N. A. Chaniotakis, Anal. Bioanal. Chem., 398, 3015 (2010).CrossRefGoogle Scholar
  67. 67.
    R. Buiculescu and N. A. Chaniotakis, Bioelectrochemistry, 86, 72 (2012).CrossRefGoogle Scholar
  68. 68.
    F. M. Tian, W. J. Wu, M. Broderick, V. Vamvakaki, N. Chaniotakis and N. Dale, Biosens. Bioelectron., 25, 2408 (2010).CrossRefGoogle Scholar
  69. 69.
    O. Choi, B. C. Kim, J. H. An, K. Min, Y. H. Kim, Y. Um, M. K. Oh and B. I. Sang, Enzyme Microb. Technol., 49, 441 (2011).CrossRefGoogle Scholar
  70. 70.
    H. R. Luckarift, M. B. Dickerson, K. H. Sandhage and J. C. Spain, Small, 2, 640 (2006).CrossRefGoogle Scholar
  71. 71.
    D. H. Nam, J. O. Lee, B. I. Sang, K. Won and Y. H. Kim, Appl. Biochem. Biotechnol., 170, 25 (2013).CrossRefGoogle Scholar
  72. 72.
    H. C. Schroder, X. H. Wang, W. Tremel, H. Ushijima and W. E. G. Muller, Nat. Prod. Rep., 25, 455 (2008).CrossRefGoogle Scholar
  73. 73.
    H. C. Schroder, O. Boreiko, A. Krasko, A. Reiber, H. Schwertner and W. E. G. Muller, J. Biomed. Mater. Res. B, 75, 387 (2005).CrossRefGoogle Scholar
  74. 74.
    M. Wiens, X. H. Wang, U. Schlossmacher, I. Lieberwirth, G. Glasser, H. Ushijima, H. C. Schroder and W. E. Muller, Calcif. Tissue Int., 87, 513 (2010).CrossRefGoogle Scholar
  75. 75.
    J. Nickel, M. K. Dreyer, T. Kirsch and W. Sebald, J. Bone Joint Surg. Am., 83, S7 (2001).Google Scholar
  76. 76.
    M. Wiens, X. H. Wang, H. C. Schroder, U. Kolb, U. Schlossmacher, H. Ushijima and W. E. Muller, Biomaterials, 31, 7716 (2010).CrossRefGoogle Scholar
  77. 77.
    P. P. Han, C. T. Wu and Y. Xiao, Biomater. Sci-UK., 1, 379 (2013).CrossRefGoogle Scholar
  78. 78.
    H. C. Schroder, M. Wiens, X. Wang, U. Schlossmacher and W. E. Muller, Prog. Mol. Subcell. Biol., 52, 283 (2011).CrossRefGoogle Scholar
  79. 79.
    F. Natalio, T. Link, W. E. G. Muller, H. C. Schroder, F. Z. Cui, X. H. Wang and M. Wiens, Acta Biomater., 6, 3720 (2010).CrossRefGoogle Scholar
  80. 80.
    W. E. G. Muller, A. Boreiko, X. Wang, A. Krasko, W. Geurtsen, M. R. Custodio, T. Winkler, L. Lukic-Bilela, T. Link and H. C. Schroder, Calcif. Tissue Int., 81, 382 (2007).CrossRefGoogle Scholar
  81. 81.
    W. E. G. Muller, X. H. Wang, P. Proksch, C. C. Perry, R. Osinga, J. Garderes and H. C. Schroder, Mar. Biotechnol., 15, 375 (2013).CrossRefGoogle Scholar
  82. 82.
    M. Wiens, T. Niem, T. A. Elkhooly, R. Steffen, S. Neumann, U. Schlossmacher and W. E. G. Muller, J. Mater. Chem. B, 1, 3339 (2013).CrossRefGoogle Scholar
  83. 83.
    M. Wiens, T. A. Elkhooly, H. C. Schroder, T. H. A. Mohamed and W. E. G. Muller, Acta Biomater., 10, 4456 (2014).CrossRefGoogle Scholar
  84. 84.
    M. Wiens, X. H. Wang, F. Natalio, H. C. Schroder, U. Schlossmacher, S. F. Wang, M. Korzhev, W. Geurtsen and W. E. G. Muller, Adv. Eng. Mater., 12, B438 (2010).CrossRefGoogle Scholar
  85. 85.
    A. Rai and C. C. Perry, J. Mater. Chem., 22, 4790 (2012).CrossRefGoogle Scholar
  86. 86.
    A. J. Mieszawska, L. D. Nadkarni, C. C. Perry and D. L. Kaplan, Chem. Mater., 22, 5780 (2010).CrossRefGoogle Scholar
  87. 87.
    A. G. Fincham, J. Moradianoldak, T. G. H. Diekwisch, D. M. Lyaruu, J. T. Wright, P. Bringas and H. C. Slavkin, J. Struct. Biol., 115, 50 (1995).CrossRefGoogle Scholar
  88. 88.
    H. Masuya, K. Shimizu, H. Sezutsu, Y. Sakuraba, J. Nagano, A. Shimizu, N. Fujimoto, A. Kawai, I. Miura, H. Kaneda, K. Kobayashi, J. Ishijima, T. Maeda, Y. Gondo, T. Noda, S. Wakana and T. Shiroishi, Hum. Mol. Genet., 14, 575 (2005).CrossRefGoogle Scholar
  89. 89.
    J. M. Holzwarth and P. X. Ma, Biomaterials, 32, 9622 (2011).CrossRefGoogle Scholar
  90. 90.
    W. E. G. Muller, E. Tolba, H. C. Schroder, B. Diehl-Seifert, T. Link and X. H. Wang, Biotechnol. J., 9, 1312 (2014).CrossRefGoogle Scholar
  91. 91.
    T. Link, X. H. Wang, U. Schlossmacher, Q. L. Feng, H. C. Schroder and W. E. G. Muller, RSC Adv., 3, 11140 (2013).CrossRefGoogle Scholar
  92. 92.
    U. Schlossmacher, H. C. Schroder, X. H. Wang, Q. L. Feng, B. Diehl-Seifert, S. Neumann, A. Trautwein and W. E. G. Muller, RSC Adv., 3, 11185 (2013).CrossRefGoogle Scholar
  93. 93.
    W. E. Muller, H. C. Schroder, Q. Feng, U. Schlossmacher, T. Link and X. Wang, J. Tissue Eng. Regen. Med., 9, E39 (2015).CrossRefGoogle Scholar
  94. 94.
    X. H. Wang, E. Tolba, H. C. Schroder, M. Neufurth, Q. L. Feng, B. Diehl-Seifert and W. E. G. Muller, PLoS One, 9, e112497 (2014)CrossRefGoogle Scholar
  95. 95.
    S. F. Wang, X. H. Wang, F. G. Draenert, O. Albert, H. C. Schroder, V. Mailander, G. Mitov and W. E. Muller, Bone, 67, 292 (2014).CrossRefGoogle Scholar
  96. 96.
    S. Simovic, N. Ghouchi-Eskandar, A. M. Sinn, D. Losic and C. A Prestidge, Curr. Drug Dis. Technol., 8, 269 (2011).CrossRefGoogle Scholar
  97. 97.
    K. I. Sano, T. Minamisawa and K. Shiba, Langmuir, 26, 2231 (2010).CrossRefGoogle Scholar
  98. 98.
    I. Rea, N. M. Martucci, L. De Stefano, I. Ruggiero, M. Terracciano, P. Dardano, N. Migliaccio, P. Arcari, R. Tate, I. Rendina and A. Lamberti, Biochim. Biophys. Acta, 1840, 3393 (2014).CrossRefGoogle Scholar
  99. 99.
    M. N. Tahir, M. Eberhardt, H. A. Therese, U. Kolb, P. Theato, W. E. Muller, H. C. Schroder and W. Tremel, Angew. Chem. Int. Ed., 45, 4803 (2006).CrossRefGoogle Scholar
  100. 100.
    M. I. Shukoor, F. Natalio, V. Ksenofontov, M. N. Tahir, M. Eberhardt, P. Theato, H. C. Schroder, W. E. Muller and W. Tremel, Small, 3, 1374 (2007).CrossRefGoogle Scholar
  101. 101.
    M. I. Shukoor, F. Natalio, N. Metz, N. Glube, M. N. Tahir, H. A. Therese, V. Ksenofontov, P. Theato, P. Langguth, J. P. Boissel, H. C. Schroder, W. E. Muller and W. Tremel, Angew. Chem. Int. Edit., 47, 4748 (2008).CrossRefGoogle Scholar
  102. 102.
    R. H. Jin and J. J. Yuan, Chem. Mater., 18, 3390 (2006).CrossRefGoogle Scholar
  103. 103.
    S. V. Patwardhan and C. C. Perry, Silicon-Neth., 2, 33 (2010).CrossRefGoogle Scholar
  104. 104.
    Y. Wang, J. Cai, Y. G. Jiang, X. G. Jiang and D. Y. Zhang, Appl. Microbiol. Biotechnol., 97, 453 (2013).CrossRefGoogle Scholar
  105. 105.
    R. Gordon, D. Losic, M. A. Tiffany, S. S. Nagy and F. A. S. Sterrenburg, Trends Biotechnol., 27, 116 (2009).CrossRefGoogle Scholar
  106. 106.
    M. S. Aw, S. Simovic, Y. Yu, J. Addai-Mensah and D. Losic, Powder Technol., 223, 52 (2012).CrossRefGoogle Scholar
  107. 107.
    C. R. Steven, G. A. Busby, C. Mather, B. Tariq, M. L. Briuglia, D. A. Lamprou, A. J. Urquhart, M. H. Grant and S. V. Patwardhan, J. Mater. Chem. B, 2, 5028 (2014).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2016

Authors and Affiliations

  • Byung Hoon Jo
    • 1
  • Chang Sup Kim
    • 2
  • Yun Kee Jo
    • 1
  • Hogyun Cheong
    • 1
  • Hyung Joon Cha
    • 1
  1. 1.Department of Chemical EngineeringPohang University of Science and TechnologyPohangKorea
  2. 2.School of Chemistry and BiochemistryYeungnam UniversityGyeongsanKorea

Personalised recommendations