Korean Journal of Chemical Engineering

, Volume 33, Issue 4, pp 1311–1317 | Cite as

Performance test of PSA-type O2 separator for efficient O2 supply to room ventilation system combined with CO2 adsorption module

  • Gi Bo Han
  • Jung Hee Jang
  • Tae Jin Lee
  • Changsik ChoiEmail author
Environmental Engineering


High purity O2 concentrated by the PSA-type O2 separator was applied to a room ventilation system combined with CO2 adsorption module to remove the indoor CO2 for the indoor air quality. And then the room was occupied by several persons to breathe for the O2 consumption and CO2 generation. As a result, the indoor air quality was improved by the ventilation system combined with the O2 supply and the CO2 adsorption module. It was due to the fact that the CO2 concentration was not steeply increased, but also even decreased and then the increasing rate of the O2 concentration with the O2 supply was simultaneously increased by the CO2 removal despite the CO2 generation and O2 consumption with the four persons’ breathing. As a representative result, in the case of supplying the high purity O2 of 30 L/min under using the CO2 adsorption module, the best performance with the highest increasing rate of O2 concentration and the lowest increasing rate of CO2 concentration was obtained among the various cases, and then the increasing rates of CO2 concentration and O2 concentration were −2.3 ppm/min and 33.3%/min, respectively.


Indoor Air Quality Room Ventilation System Zeolite-based Adsorbent O2 Separator Supply PSA-type CO2 Adsorption Module 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.-U. Park and K.-C. Ha, Environ. Int., 34, 629 (2008).CrossRefGoogle Scholar
  2. 2.
    M. Kotol, C. Rode, G. Clausen and T.R. Nielsen, Build. Environ., 81, 29 (2014).CrossRefGoogle Scholar
  3. 3.
    ASHRAE. ANSI/ASHRAE Standard 62. 1-2010. Ventilation for acceptable indoor air quality. Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. (2010).Google Scholar
  4. 4.
    K. Charles, R. J. Magee, D. Won and E. Lusztyk, CMEIAQ-II Report 5.Google Scholar
  5. 1.
    National Research Council Canada (2005).Google Scholar
  6. 5.
    G. Beko, T. Lund, F. Nors, J. Toftum and G. Clausen, Build. Environ., 45, 2289 (2010).CrossRefGoogle Scholar
  7. 6.
    D. A. Coley and A. Beisteiner, Int. J. Vent., 1, 45 (2002).Google Scholar
  8. 7.
    Bake-Biro Zs, D. J. Clements-Croome, N. Kochhar, H. B. Awbi and M. J. Williams, Build. Environ., 48, 215 (2012).CrossRefGoogle Scholar
  9. 8.
    D. J. Rendell, M. Clarke and M. Evans, SAE Technical Paper, 01, 2644 (2003).Google Scholar
  10. 9.
    K. Z. House, A.C. Baclig, M. Ranjan, E.A. van Nierop, J. Wilcox and H. J. Herzog, Proc. Natl. Acad. Sci., 108, 204 (2011).CrossRefGoogle Scholar
  11. 10.
    F. S. Zeman and K. S. Lackner, World Resour. Rev., 16, 157 (2004).Google Scholar
  12. 11.
    D.W. Keith, M. Ha-Duong and J.K. Stolaroff, Clim. Chang., 74, 17 (2006).CrossRefGoogle Scholar
  13. 12.
    D.W. Keith, Science, 325, 165 (2009).CrossRefGoogle Scholar
  14. 13.
    K. S. Lackner, Eur. Phys. J. Spec. Top, 176, 93 (2009).CrossRefGoogle Scholar
  15. 14.
    A. Goeppert, M. Czaun, G. S. Prakash and G.A. Olah, Environ. Sci., 5, 788 (2012).Google Scholar
  16. 15.
    R. Baciocchi, G. Storti and M. Mazzotti, Chem. Eng. Process. Process. Intensif., 45, 1047 (2006).CrossRefGoogle Scholar
  17. 16.
    C.W. Jones, Annu. Rev. Chem. Biomol. Eng., 2, 31 (2011).CrossRefGoogle Scholar
  18. 17.
    K. S. Lackner, Energy, 50, 38 (2013).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2016

Authors and Affiliations

  • Gi Bo Han
    • 1
  • Jung Hee Jang
    • 1
  • Tae Jin Lee
    • 2
  • Changsik Choi
    • 1
    Email author
  1. 1.Plant Engineering DivisionInstitute for Advanced EngineeringGyeonggi-doKorea
  2. 2.School of Chemical Engineering Yeungnam UniversityGyeongbukKorea

Personalised recommendations