Korean Journal of Chemical Engineering

, Volume 33, Issue 2, pp 532–538 | Cite as

Degradation of azo dye C.I. Acid Red 18 using an eco-friendly and continuous electrochemical process

  • Ali Reza Rahmani
  • Kazem Godini
  • Davood Nematollahi
  • Ghasem AzarianEmail author
  • Sima Maleki
Environmental Engineering


Continuous anodic oxidation of azo dye C.I. Acid Red 18 by using PbO2 electrode in aqueous solution was studied. To reach the best conditions of the process, the influence of various operating parameters such as pH, current density, hydraulic retention time (HRT) and dye concentration on the removal rate of chemical oxygen demand (COD) and color, as indexes showing the amount of efficiency, was investigated. The findings showed that, respectively, 99.9% and 80.0% of the dye and COD were removed (at optimized conditions). Mineralization current efficiency results indicated that at the beginning of the reaction mineralization occurred quickly at a low current density, whereas at high amounts the rate of mineralization the efficiency decreased. At the optimum conditions, the majority of COD was removed only with 38.2 kWh/kg COD of energy consumption in 120 min. By controlling HO•/dye concentration ratio via the parameters adjustment, particularly HRT and current density, this system can treat Acid Red 18 well even at high concentrations. Furthermore, the voltammetry study illustrated that electroactive intermediates created during the process were mineralized at current density of 8.6mA/cm2.


Azo dye Acid Red 18 Anodic Oxidation Constant Current Electrolysis Wastewater Treatment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Basiri Parsa, M. Golmirzaei and M. Abbasi, J. Ind. Eng. Chem., 20, 689 (2014).CrossRefGoogle Scholar
  2. 2.
    E. Hosseini Koupaie, M. Alavi Moghaddam and S. Hashemi, J. Hazard. Mater., 195, 147 (2011).CrossRefGoogle Scholar
  3. 3.
    S. S. Martínez and E. V. Uribe, Ultrason. Sonochem., 19, 174 (2012).CrossRefGoogle Scholar
  4. 4.
    E. J. Ruiz, C. Arias, E. Brillas, A. Hernández-Ramírez and J. Peralta-Hernández, Chemosphere, 82, 495 (2011).CrossRefGoogle Scholar
  5. 5.
    S. Asad, M. Amoozegar, A. A. Pourbabaee, M. Sarbolouki and S. Dastgheib, Bioresour. Technol., 98, 2082 (2007).CrossRefGoogle Scholar
  6. 6.
    H. Lin, H. Zhang, X. Wang, L. Wang and J. Wu, Sep. Purif. Technol., 122, 533 (2014).CrossRefGoogle Scholar
  7. 7.
    M. Shirzad-Siboni, S. J. Jafari, O. Giahi, I. Kim, S. M. Lee and J. K. Yang, J. Ind. Eng. Chem., 20, 1432 (2014).CrossRefGoogle Scholar
  8. 8.
    A. Pandey, P. Singh and L. Iyengar, Int. Biodeter. Biodegr., 59, 73 (2007).CrossRefGoogle Scholar
  9. 9.
    E. Hosseini Koupaie, M. Alavi Moghaddam and S. Hashemi, Bioresour. Technol., 127, 415 (2013).CrossRefGoogle Scholar
  10. 10.
    E. Hosseini Koupaie, M. Alavi Moghaddam and S. Hashemi, Int. Biodeter. Biodegr., 71, 43 (2012).CrossRefGoogle Scholar
  11. 11.
    S. Mozia, M. Tomaszewska and A. W. Morawski, Desalination, 198, 183 (2006).CrossRefGoogle Scholar
  12. 12.
    S. Mozia, M. Tomaszewska and A. W. Morawski, Desalination, 185, 449 (2005).CrossRefGoogle Scholar
  13. 13.
    G. Kazem, G. Azarian, D. Nematollahi, A. R. Rahmani and H. Zolghadrnasab, Res. J. Chem. Environ., 16, 98 (2012).Google Scholar
  14. 14.
    A. R. Rahmani, D. Nematollahi, K. Godini and G. Azarian, Sep. Purif. Technol., 107, 166 (2013).CrossRefGoogle Scholar
  15. 15.
    M. Hossain, I. Mahmud, S. Parvez and H. M. Cho, Environ. Eng. Res., 18, 157 (2013).CrossRefGoogle Scholar
  16. 16.
    W. C. Lin, C. H. Chen, H. Y. Tang, Y. C. Hsiao, J. R. Pan, C. C. Hu and C. Huang, Appl. Catal. B-Environ., 140, 32 (2013).CrossRefGoogle Scholar
  17. 17.
    X. Florenza, A. M. S. Solano, F. Centellas, C. A. Martínez-Huitle, E. Brillas and S. Garcia-Segura, Electrochem. Acta, 142, 276 (2014).CrossRefGoogle Scholar
  18. 18.
    Y. Z. Song, Dyes Pigm., 87, 39 (2010).CrossRefGoogle Scholar
  19. 19.
    J. Sim, H. Seo and J. Kim, Korean J. Chem. Eng., 29, 483 (2012).CrossRefGoogle Scholar
  20. 20.
    K. Godini, G. Azarian, A. R. Rahmani and H. Zolghadrnasab, J. Res. Health Sci., 13, 188 (2013).Google Scholar
  21. 21.
    S. Song, L. Zhan, Z. He, L. Lin, J. Tu, Z. Zhang, J. Chen and L. Xu, J. Hazard. Mater., 175, 614 (2010).CrossRefGoogle Scholar
  22. 22.
    S. Song, J. Fan, Z. He, L. Zhan, Z. Liu, J. Chen and X. Xu, Electrochem. Acta, 55, 3606 (2010).CrossRefGoogle Scholar
  23. 23.
    I. Sirés, E. Brillas, G. Cerisola and M. Panizza, J. Electroanal. Chem., 613, 151 (2008).CrossRefGoogle Scholar
  24. 24.
    S. Curteanu, K. Godini, C. G. Piuleac, G. Azarian, A. R. Rahmani and C. Butnariu, Ind. Eng. Chem. Res., 53, 4902 (2014).CrossRefGoogle Scholar
  25. 25.
    H. S. Awad and N. A. Galwa, Chemosphere, 61, 1327 (2005).CrossRefGoogle Scholar
  26. 26.
    A. R. Rahmani, D. Nematollahi, G. Azarian, K. Godini and Z. Berizi, Korean J. Chem. Eng., 32, 1570 (2015).CrossRefGoogle Scholar
  27. 27.
    W. Horwitz (Ed.), Standard Methods for the Examination of Water and Wastewater, 20th Ed., APHA, Washington, D.C. (2005).Google Scholar
  28. 28.
    H. Xu, A. P. Li, Q. Qi, W. Jiang and Y. M. Sun, Korean J. Chem. Eng., 29, 1178 (2012).CrossRefGoogle Scholar
  29. 29.
    Y. Cong, Z. Wu and Y. Li, Korean J. Chem. Eng., 25, 727 (2008).CrossRefGoogle Scholar
  30. 30.
    W. Mook, M. Aroua, M. Chakrabarti, C. Low, P. V. Aravind and N. Brandon, Electrochim. Acta, 94, 327 (2013).CrossRefGoogle Scholar
  31. 31.
    J. Gao, H. Zhao, F. Cao, J. Zhang and C. Cao, Electrochim. Acta, 54, 2595 (2009).CrossRefGoogle Scholar
  32. 32.
    A. R. Rahmani, K. Godini, D. Nematollahi and G. Azarian, Desalin. Water Treat., 56, 2234 (2015).CrossRefGoogle Scholar
  33. 33.
    M. Panizza and C. A. Martinez-Huitle, Chemosphere, 90, 1455 (2013).CrossRefGoogle Scholar
  34. 34.
    H. An, H. Cui, W. Zhang, J. Zhai, Y. Qian, X. Xie and Q. Li, Chem. Eng. J., 209, 86 (2012).CrossRefGoogle Scholar
  35. 35.
    B. Krishnakumar and M. Swaminathan, Spectrochim. Acta A, 81, 739 (2011).CrossRefGoogle Scholar
  36. 36.
    D. Nematollahi and H. Shayani-Jam, J. Org. Chem., 73, 3428 (2008).CrossRefGoogle Scholar
  37. 37.
    D. Nematollahi, A. Amani and E. Tammari, J. Org. Chem., 72, 3646 (2007).CrossRefGoogle Scholar
  38. 38.
    D. Nematollahi, A. Afkhami, E. Tammari, T. Shariatmanesh, M. Hesari and M. Shojaeifard, Chem. Commun., 2, 162 (2007).CrossRefGoogle Scholar
  39. 39.
    D. Nematollahi, M. S. Workentin and E. Tammari, Chem. Commun., 15, 1631 (2006).CrossRefGoogle Scholar
  40. 40.
    L. Yue, K. Wang, J. Guo, J. Yang, X. Luo, J. Lian and L. Wang, J. Ind. Eng. Chem., 20, 725 (2014).CrossRefGoogle Scholar
  41. 41.
    Z. He, C. Huang, Q. Wang, Z. Jiang, J. Chen and S. Song, Int. J. Electrochem. Sci., 6, 4341 (2011).Google Scholar
  42. 42.
    H. Beiginejad, D. Nematollahi, M. Bayat, F. Varmaghani and A. Nazaripour, J. Electrochem. Soc., 160, H693 (2013).CrossRefGoogle Scholar
  43. 43.
    H. Beiginejad, D. Nematollahi, F. Varmaghani, M. Bayat and H. Salehzadeh, J. Electrochem. Soc., 160, G3001 (2013).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2016

Authors and Affiliations

  • Ali Reza Rahmani
    • 1
  • Kazem Godini
    • 2
  • Davood Nematollahi
    • 3
  • Ghasem Azarian
    • 1
    Email author
  • Sima Maleki
    • 1
  1. 1.Department of Environmental Health Engineering, Faculty of Health and Research Center for Health SciencesHamadan University of Medical SciencesHamadanIran
  2. 2.Faculty of Health, Environmental Health Engineering DepartmentIlam University of Medical SciencesIlamIran
  3. 3.Faculty of ChemistryBu-Ali-Sina UniversityHamadanIran

Personalised recommendations