Korean Journal of Chemical Engineering

, Volume 33, Issue 2, pp 539–546 | Cite as

Photocatalytic degradation of azo dye using nano-ZrO2/UV/Persulfate: Response surface modeling and optimization

  • Mahsa Moradi
  • Farshid GhanbariEmail author
  • Mohammad Manshouri
  • Kambiz Ahmadi Angali
Environmental Engineering


Dyes have always been considered in the context of recalcitrant organic pollutants in water. The present research has focused on the decolorization of Direct Blue 71 (DB71) using photocatalysis process of nano-ZrO2/UV/ Persulfate. Response surface method with central composite design was applied to determine the effects of four main factors (time, ZrO2 dosage, persulfate dosage and pH) on decolorization of DB71. The results indicated that the obtained quadratic model had a high R-squared coefficient based on the analysis of variance (ANOVA). Time had the highest effect (45.5%) on decolorization of DB71. The optimum condition predicted for complete decolorization was pH=7, 0.4 g ZrO2, 0.75 mM persulfate and 40 min reaction time. Verification experiments confirmed that there was good agreement between the experimental and predicted responses. The studied photocatalytic process could oxidize and destruct the structure of the DB71, and average oxidation state (AOS) significantly increased from −1.5 to +1.33, indicating the presence of more oxidized by-products and, consequently, improvement of biodegradability. The quenching tests showed that sulfate radical was the major agent in DB71 decolorization. It can be concluded that nano-ZrO2/ UV/Persulfate is a very effective process for decolorization of colored wastewater.


Nano-ZrO2 Synthetic Dye Sulfate Radical Response Surface Method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Chatzisymeon, N. P. Xekoukoulotakis, A. Coz, N. Kalogerakis and D. Mantzavinos, J. Hazard. Mater., 137, 998 (2006).CrossRefGoogle Scholar
  2. 2.
    X.-R. Xu and X.-Z. Li, Sep. Purif. Technol., 72, 105 (2010).CrossRefGoogle Scholar
  3. 3.
    F. E. Fernades Rêgo, A. M. Sales Solano, I. C. da Costa Soares, D.R. da Silva, C.A. Martinez Huitle and M. Panizza, J. Environ. Chem. Eng., 2, 875 (2014).CrossRefGoogle Scholar
  4. 4.
    F. Ghanbari and M. Moradi, J. Environ. Chem. Eng., 3, 499 (2015).CrossRefGoogle Scholar
  5. 5.
    A. Eslami, M. Moradi, F. Ghanbari and F. Mehdipour, J. Environ. Health Sci. Eng., 11, 1 (2013).CrossRefGoogle Scholar
  6. 6.
    V. Augugliaro, M. Litter, L. Palmisano and J. Soria, J. Photochem. Photobiol., C, 7, 127 (2006).CrossRefGoogle Scholar
  7. 7.
    A. Yazdanbakhsh, F. Mehdipour, A. Eslami, H. S. Maleksari and F. Ghanbari, Water Sci. Technol., 71, 1097 (2015).CrossRefGoogle Scholar
  8. 8.
    M.N. Chong, B. Jin, C.W.K. Chow and C. Saint, Water Res., 44, 2997 (2010).CrossRefGoogle Scholar
  9. 9.
    M. R. Hoffmann, S. T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995).CrossRefGoogle Scholar
  10. 10.
    U. I. Gaya and A. H. Abdullah, J. Photochem. Photobiol., C, 9, 1 (2008).CrossRefGoogle Scholar
  11. 11.
    B. Gözmen, Environ. Prog. Sustain. Energy, 31, 296 (2012).CrossRefGoogle Scholar
  12. 12.
    R. Hazime, Q. H. Nguyen, C. Ferronato, A. Salvador, F. Jaber and J.M. Chovelon, Appl. Catal., B, 144, 286 (2014).CrossRefGoogle Scholar
  13. 13.
    Y. F. Rao, L. Qu, H. Yang and W. Chu, J. Hazard. Mater., 268, 23 (2014).CrossRefGoogle Scholar
  14. 14.
    S. Moghaddam, M. Rasoulifard, M. Vahedpour and M. Eskandarian, Korean J. Chem. Eng., 31, 1577 (2014).CrossRefGoogle Scholar
  15. 15.
    K. Govindan, M. Raja, M. Noel and E. J. James, J. Hazard. Mater., 272, 42 (2014).CrossRefGoogle Scholar
  16. 16.
    Y.-T. Lin, C. Liang and J.-H. Chen, Chemosphere, 82, 1168 (2011).CrossRefGoogle Scholar
  17. 17.
    H. Eskandarloo, A. Badiei and M. A. Behnajady, Desal. Water Treat., 1 (2014).Google Scholar
  18. 18.
    B. Tyagi, K. Sidhpuria, B. Shaik and R.V. Jasra, Ind. Eng. Chem. Res., 45, 8643 (2006).CrossRefGoogle Scholar
  19. 19.
    A.T. Nair, A.R. Makwana and M. M. Ahammed, Water Sci. Technol., 69, 464 (2014).CrossRefGoogle Scholar
  20. 20.
    APHA, Standard methods for the examination of water and wastewater, APHA, Washington DC (1999).Google Scholar
  21. 21.
    L.-A. Lu, Y.-S. Ma, M. Kumar and J.-G. Lin, Sep. Purif. Technol., 81, 325 (2011).CrossRefGoogle Scholar
  22. 22.
    P. Kajitvichyanukul and N. Suntronvipart, J. Hazard. Mater., 138, 384 (2006).CrossRefGoogle Scholar
  23. 23.
    R.Y. Hong, J. H. Li, L. L. Chen, D.Q. Liu, H. Z. Li, Y. Zheng and J. Ding, Powder Technol., 189, 426 (2009).CrossRefGoogle Scholar
  24. 24.
    F. Torrades and J. García-Montaño, Dyes Pigm., 100, 184 (2014).CrossRefGoogle Scholar
  25. 25.
    R. Davarnejad, M. Mohammadi and A.F. Ismail, J. Water Proc. Eng., 3, 18 (2014).CrossRefGoogle Scholar
  26. 26.
    S. Chun, S. An, S. Lee, J. Kim and S. Chang, Korean J. Chem. Eng., 31, 994 (2014).CrossRefGoogle Scholar
  27. 27.
    F. Rasouli, S. Aber, D. Salari and A.R. Khataee, Appl. Clay Sci., 87, 228 (2014).CrossRefGoogle Scholar
  28. 28.
    K. Cruz-González, O. Torres-Lopez, A. M. García-León, E. Brillas, A. Hernández-Ramírez and J. M. Peralta-Hernández, Desalination, 286, 63 (2012).CrossRefGoogle Scholar
  29. 29.
    A. R. Khataee, M. Zarei and A. R. Khataee, CLEAN - Soil, Air, Water, 39, 482 (2011).CrossRefGoogle Scholar
  30. 30.
    M. Moradi and F. Ghanbari, J. Water Proc. Eng., 4, 67 (2014).CrossRefGoogle Scholar
  31. 31.
    A. K. Abdessalem, N. Oturan, N. Bellakhal, M. Dachraoui and M. A. Oturan, Appl. Catal., B, 78, 334 (2008).CrossRefGoogle Scholar
  32. 32.
    J. Yan, M. Lei, L. Zhu, M.N. Anjum, J. Zou and H. Tang, J. Hazard. Mater., 186, 1398 (2011).CrossRefGoogle Scholar
  33. 33.
    J. Saien and A.R. Soleymani, J. Hazard. Mater., 144, 506 (2007).CrossRefGoogle Scholar
  34. 34.
    Y.-L. Song, J.-T. Li and B. Bai, Water, Air, Soil Pollut., 213, 311 (2010).CrossRefGoogle Scholar
  35. 35.
    D. Chakrabortty and S. S. Gupta, J. Environ. Sci., 25, 1034 (2013).CrossRefGoogle Scholar
  36. 36.
    Y. Ding, L. Zhu, N. Wang and H. Tang, Appl. Catal., B, 129, 153 (2013).CrossRefGoogle Scholar
  37. 37.
    G. P. Anipsitakis and D.D. Dionysiou, Environ. Sci. Technol., 37, 4790 (2003).CrossRefGoogle Scholar
  38. 38.
    N. Jaafarzadeh, F. Ghanbari and M. Moradi, Korean J. Chem. Eng., 32, 458 (2015).CrossRefGoogle Scholar
  39. 39.
    F. Ghanbari, M. Moradi and M. Manshouri, J. Environ. Chem. Eng., 2, 1846 (2014).CrossRefGoogle Scholar
  40. 40.
    M. Kobya and S. Delipinar, J. Hazard. Mater., 154, 1133 (2008).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2016

Authors and Affiliations

  • Mahsa Moradi
    • 1
    • 2
  • Farshid Ghanbari
    • 3
    Email author
  • Mohammad Manshouri
    • 4
  • Kambiz Ahmadi Angali
    • 5
  1. 1.Department of Environmental Health Engineering, School of Paramedicine and Public HealthSemnan University of Medical SciencesSemnanIran
  2. 2.Department of Environmental Health Engineering, School of Medical SciencesTarbiat Modares UniversityTehranIran
  3. 3.Department of Environmental Health Engineering, School of Public HealthAhvaz Jundishapur University of Medical SciencesAhvazIran
  4. 4.Department of Environmental Health Engineering, School of Public HealthShahid Beheshti University of Medical SciencesTehranIran
  5. 5.Department of Statistics and EpidemiologyAhvaz Jundishapur University of Medical SciencesAhvazIran

Personalised recommendations