Advertisement

Korean Journal of Chemical Engineering

, Volume 32, Issue 11, pp 2355–2360 | Cite as

Highly selective magnetic polymer particles via molecular imprinting

  • Xiaobing Wang
  • Guihua QiuEmail author
  • Yi Ge
  • Wei Zheng
  • Lingmei Kong
  • Yajuan Xue
  • Bin Ren
  • Yuxing Peng
Polymer, Industrial Chemistry

Abstract

Magnetic hydrophilic molecularly imprinted polymer (MIP) particles were successfully synthesized via an inverse suspension polymerization in silicone oil, by employing methacryloxypropyltrimethoxysilane(MPS)-modified Fe3O4 nanoparticles as magnetic particles, 2,4-dichlorophenoxyacetic acid (2,4-D) as template, hydroxyethyl methacrylate (HEMA) as hydrophilic monomer, and acetonitrile as high polar porogen. The synthesized magnetic hydrophilic MIP particles could be separated rapidly under an external magnetic field. About 94% transmittance of the particlewater suspension could be reached within 20 min by magnetic separation, whereas about 84% transmittance was achieved after at least 180 min by sedimentation. The adsorption capacity of the particles was also studied in pure aqueous environments. These hydrophilic MIP particles had a higher selectivity for templates. Hydrophilic MIP particles took on a higher imprinting factor than hydrophobic MIP particles and 2,4-D were able to rebind hydrophilic MIP particles more easily than 4-Chorophenoxyacetic acid.

Keywords

Molecular Imprinting Magnetic Particles Suspension Polymerization Hydrophilic Particles Selectivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Wulff, Chem. Rev., 102, 1 (2002).CrossRefGoogle Scholar
  2. 2.
    K. Haupt and K. Mosbach, Chem. Rev., 100, 2495 (2002).CrossRefGoogle Scholar
  3. 3.
    G. Wulff, Microchim Acta, 180, 1359 (2013).CrossRefGoogle Scholar
  4. 4.
    A. Martín-Esteban, Trends in Analytical Chemistry, 45, 169 (2013).CrossRefGoogle Scholar
  5. 5.
    Y. Yin, Z. Dong, Q. Luo and J. Liu, Progress in Polymer Sci., 37, 1476 (2012).CrossRefGoogle Scholar
  6. 6.
    K. Yang, J. Liu, S. Li, Q. Li, Q. Wu, Y. Zhou, Q. Zhao, N. Deng, Z. Liang, L. Zhang and Y. Zhang, Chem. Commun., 50, 9521 (2014).CrossRefGoogle Scholar
  7. 7.
    J. Wang, J. Li, H. Li and L. Ding, Mater. Lett., 131, 9 (2014).CrossRefGoogle Scholar
  8. 8.
    E. Asadi, S. Azodi-Deilami, M. Abdouss, D. Kordestani, A. Rahimi and S. Asadi, Korean J. Chem. Eng., 31, 1028 (2014).CrossRefGoogle Scholar
  9. 9.
    L. Piscopo, C. Prandi, M. Coppa, K. Sparnacci, M. Laus, A. Laganà, R. Curini and G. D’Ascenzo, Macromol. Chem. Phys., 203, 1532 (2002).CrossRefGoogle Scholar
  10. 10.
    M. Zhao, X. Chen, H. Zhang, H. Yan and H. Zhang, Biomacromolecules, 15, 1663 (2014).CrossRefGoogle Scholar
  11. 11.
    T. Zhou, L. Jørgensen, M. Mattebjerg, I. Chronakis and L. Ye, RSC Adv., 4, 30292 (2014).CrossRefGoogle Scholar
  12. 12.
    X. Shen, C. Xu and L. Ye, Soft Matter, 8, 7169 (2012).CrossRefGoogle Scholar
  13. 13.
    V. Bulmus, Y. Chan, Q. Nguyen and H. Tran, Macromol. Biosci., 7, 446 (2007).CrossRefGoogle Scholar
  14. 14.
    F. Xu, E. Kang and K. Neoh, Biomaterials, 27, 2787 (2006).CrossRefGoogle Scholar
  15. 15.
    B. Gao, Y. Yang, J. Wang and Y. Zhang, J. Biochem. Molecular Toxicology, 22, 166 (2008).CrossRefGoogle Scholar
  16. 16.
    C. Gomez, G. Pastrana, D. Serrano, E. Zuzek, M. Villar and M. Strumia, Polymer, 53, 2949 (2012).CrossRefGoogle Scholar
  17. 17.
    B. Dirion, Z. Cobb, E. Schillinger, L. Andersson and B. Sellergren, J. Am. Chem. Soc., 125, 15101 (2003).CrossRefGoogle Scholar
  18. 18.
    H. Daniel, B. Michal, M. Hana and J. B. Milan, J. Sep. Sci., 30, 1751 (2007).CrossRefGoogle Scholar
  19. 19.
    C. Gonzato, M. Courty, P. Pasetto and K. Haupt, Adv. Funct. Mater., 21, 3947 (2011).CrossRefGoogle Scholar
  20. 20.
    M. Ding, X. Wu, L. Yuan, S. Wang, Y. Li, R. Wang, T. Wen, S. Du and X. Zhou, J. Hazard. Mater., 191, 177 (2011).CrossRefGoogle Scholar
  21. 21.
    X. Wang, L. Wang, X. He, Y. Zhang and L. Chen, Talanta, 78, 327 (2009).CrossRefGoogle Scholar
  22. 22.
    Y. Zou, C. Zhao, J. Dai, Z. Zhou, J. Pan, P. Yu, Y. Yan and C. Li, Colloid Polym. Sci., 292, 333 (2014).CrossRefGoogle Scholar
  23. 23.
    W. Zheng, F. Gao and H. Gu, J. Magn. Magn. Mater., 288, 403 (2005)CrossRefGoogle Scholar
  24. 24.
    Y. Sun, X. Ding, Z. Zheng, X. Cheng, X. Hu and Y. Peng, Chem. Commun., 26, 2765 (2006).CrossRefGoogle Scholar
  25. 25.
    X. Wang, X. Ding, Z. Zheng, X. Hu, X. Cheng and Y. Peng, Macromol. Rapid Commun., 27, 1180 (2006).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2015

Authors and Affiliations

  • Xiaobing Wang
    • 1
  • Guihua Qiu
    • 1
    Email author
  • Yi Ge
    • 2
  • Wei Zheng
    • 1
  • Lingmei Kong
    • 1
  • Yajuan Xue
    • 1
  • Bin Ren
    • 1
  • Yuxing Peng
    • 3
  1. 1.Shandong Institute of Nonmetallic MaterialsChina North Industries Group CorporationJinan, ShandongP. R. China
  2. 2.School of Aerospace, Transport and ManufactureCranfield UniversityBedfordshireUK
  3. 3.Chengdu Institute of Organic ChemistryChinese Academy of SciencesChengdu, SichuanP. R. China

Personalised recommendations