Korean Journal of Chemical Engineering

, Volume 32, Issue 9, pp 1847–1852 | Cite as

Thermal stability and degradation kinetics of polyphenols and polyphenylenediamines enzymatically synthesized by horseradish peroxidase

  • Hansol Park
  • Oyul Kwon
  • Keungarp RyuEmail author


Various substituted phenols and phenylenediamines were enzymatically polymerized by horseradish peroxidase in 80% (v/v) organic solvents-aqueous buffer (100 mM sodium acetate, pH 5) mixtures with H2O2 as the oxidant. The thermal stability of the polymers was investigated by thermogravimetric analysis (TGA) and represented by the char yield (wt% of the initial polymer mass) after being heated at 800 °C. Poly(p-phenylphenol) had the highest thermal stability among the synthesized polymers with a char yield of 47 wt%. The polymers containing amino groups such as poly(p-aminophenol) and polyphenylenediamines were also shown to possess high thermal stabilities. The activation energies for the thermal degradation of the polymers determined by derivative thermogravimetric analysis (DTG) using Horowitz-Metzger’s pseudo-first-order kinetics were in the range between 23-65 kJ/mol and comparable to those of the chemically synthesized polymers. Dynamic structural changes of the enzymatically synthesized polymers upon heating were studied by differential scanning calorimetry (DSC). The DSC curves of poly(p-phenylphenol) showed a broad exothermic peaks between 150-250 °C, indicating that the polymer undergoes complex structural transitions in the temperature range. On the other hand, the DSC curves of the poly(p-aminophenol) and the poly(p-phenylenediamine) which contain amino groups showed strong sharp endothermic peaks near 150 °C, implying that these polymers possess homogeneous oriented structures which undergo a concerted structural disintegration upon heating.


Peroxidase Polydiamines Polyphenols Thermal Property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.S. Dordick, M.A. Marletta and A.M. Klibanov, Biotechnol. Bioeng., 30, 31 (1987).CrossRefGoogle Scholar
  2. 2.
    J.A. Akkara, K. J. Senecal and D. L. Kaplan, J. Polym. Sci. Polym. Chem., 29, 1561 (1991).CrossRefGoogle Scholar
  3. 3.
    S. Kobayashi, I. Kaneko and H. Uyama, Chem. Lett., 21, 393 (1992).CrossRefGoogle Scholar
  4. 4.
    K. S. Alva, J. Kuma, K. A. Marx and S. K. Tripathy, Marcomolecules, 30, 4024 (1997).CrossRefGoogle Scholar
  5. 5.
    J. Shan, L. Han, F. Bai and S. Cao, Polym. Adv. Technol., 14, 330 (2003).CrossRefGoogle Scholar
  6. 6.
    R. A. Gross, A. Kumar and B. Kalra, Chem. Rev., 101, 2097 (2001).CrossRefGoogle Scholar
  7. 7.
    M. Puiu, A. Raducan, I. Babaligea and D. Oancea, Bioproc. Biosyst. Eng., 31, 579 (2008).CrossRefGoogle Scholar
  8. 8.
    M. Moniruzzaman, K. Nakashima, N. Kamiya and M. Goto, Biochem. Eng. J., 48, 295 (2010).CrossRefGoogle Scholar
  9. 9.
    D. Ichinohe, T. Muranaka, T. Sasaki, M. Kobayashi and H. Kise, J. Polym. Sci., Part A: Polym. Chem., 36, 2593 (1998).CrossRefGoogle Scholar
  10. 10.
    J. Shan and S. Cao, Polym. Adv. Technol., 11, 288 (2000).CrossRefGoogle Scholar
  11. 11.
    Y. H. Kim, E. S. An, S.Y. Park, J. Lee, J. H. Kim and B. K. Song, J. Mol. Catal. B: Enzym., 44, 149 (2007).CrossRefGoogle Scholar
  12. 12.
    G. I. Berglund, G. H. Carlsson, A.T. Smith, H. Szoke, A. Henriksen and J. Hajdu, Nature, 417, 463 (2002).CrossRefGoogle Scholar
  13. 13.
    N. C. Veitch, Phytochemistry, 65, 249 (2004).CrossRefGoogle Scholar
  14. 14.
    H. S. Park, J. H. Park, H. S. Lee and K. Ryu, Korean Chem. Eng. Res., 51, 111 (2013).CrossRefGoogle Scholar
  15. 15.
    X.G. Li, M.R. Huang and W. Duan, Chem. Rev., 102, 2925 (2002).CrossRefGoogle Scholar
  16. 16.
    H. H. Horowitz and G. Metzger, Anal. Chem., 35, 1464 (1963).CrossRefGoogle Scholar
  17. 17.
    R. Gupta, V. Kumar, P.K. Goyal and S. Kumar, J. Chem. Pharm. Res., 2, 629 (2010).Google Scholar
  18. 18.
    J. S. Dordick, Enzyme Microb. Technol., 11, 194 (1989).CrossRefGoogle Scholar
  19. 19.
    A. M. Klibanov, Nature, 409, 241 (2001).CrossRefGoogle Scholar
  20. 20.
    G. Carrea and S. Riva, Angew. Chem. Int. Ed., 39, 2226 (2000).CrossRefGoogle Scholar
  21. 21.
    C. Xialing and M. Lin, J. Biochem. Technol., 1, 92 (2009).Google Scholar
  22. 22.
    S. Gul, A. A. Shah and S. Bilal, J. Sci. Innov. Res., 2, 673 (2013).Google Scholar
  23. 23.
    S. D Seul, D. K. Kim and S.W. Park, J. Korean Inst. Chem. Eng., 25,237 (1987).Google Scholar
  24. 24.
    M. Natarajan and S. C. Murugavel, High Perform. Polym., 25, 685 (2013).CrossRefGoogle Scholar
  25. 25.
    P. S. Abthagir and R. Saraswathi, Mater. Chem. Phys., 92, 21 (2005).CrossRefGoogle Scholar
  26. 26.
    S. Archana and S. R. Jaya, Res. J. Chem. Sci., 4, 60 (2014).Google Scholar
  27. 27.
    Jaidev and S. Ramaprabhu, J. Mater. Chem., 22, 18775 (2012).CrossRefGoogle Scholar
  28. 28.
    A. A. Ariffin, R.D. O’Neill, M. Z. A. Yahya and Z. M. Zain, Int. J. Electrochem. Sci., 7, 10154 (2012).Google Scholar
  29. 29.
    D.M. Zhou, Y.Q. Dai and K. K. Shiu, J. Appl. Electrochem., 40, 1997 (2010).CrossRefGoogle Scholar
  30. 30.
    B. Somboonsub, M. A. Invernale, S. Thongyai, P. Praserthdam, D. A. Scola and G. A. Sotzing, Polymer, 51, 1231 (2010).CrossRefGoogle Scholar
  31. 31.
    M. G. Han, S.W. Byun and S. S. Im, Polym. Adv. Technol., 13, 320 (2002).CrossRefGoogle Scholar
  32. 32.
    F. Laoutid, L. Bonnaud, M. Alexandre, J.M. Lopez-Cuesta and Ph. Dubois, Mater. Sci. Eng., R, 63, 100 (2009).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2015

Authors and Affiliations

  1. 1.Department of Chemical Engineering, College of EngineeringUniversity of UlsanUlsanKorea
  2. 2.Department of Environmental EngineeringSeoul National University of Science and TechnologySeoulKorea

Personalised recommendations