Advertisement

Korean Journal of Chemical Engineering

, Volume 32, Issue 9, pp 1896–1901 | Cite as

Preparation of anion exchange membrane using polyvinyl chloride (PVC) for alkaline water electrolysis

  • Gab-Jin Hwang
  • Soo-Gon Lim
  • Soo-Yeon Bong
  • Cheol-Hwi Ryu
  • Ho-Sang ChoiEmail author
Separation Technology, Thermodynamics

Abstract

An anion exchange membrane was prepared by the chloromethylation and the amination of polyvinyl chloride (PVC), as the base polymer. The membrane properties of the prepared anion exchange membrane, including ionic conductivity, ion exchange capacity, and water content were measured. The ionic conductivity of the prepared anion exchange membrane was in the range of 0.098×10−2-7.0×10−2S cm−1. The ranges of ion exchange capacity and water content were 1.9-3.7meq./g-dry-membrane and 35.1-63.1%, respectively. The chemical stability of the prepared anion exchange membrane was tested by soaking in 30 wt% KOH solution to determine its availability as a separator in the alkaline water electrolysis. The ionic conductivity during the chemical stability test largely did not change.

Keywords

Hydrogen Production Water Electrolysis Alkaline Water Electrolysis Separator Anion Exchange Membrane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.-J. Hwang, K.-S. Kang, H.-J. Han and J.-W. Kim, Trans. of the Korean Hydrogen and New Energy Society, 18, 95 (2007).Google Scholar
  2. 2.
    H.-S. Choi, C.-H. Ryu, S.-G. Lee, C.-S. Byun and G.-J. Hwang, Trans. of the Korean Hydrogen and New Energy Society, 22, 184 (2011).Google Scholar
  3. 3.
    J. Hnat, M. Paider, J. Schauer, J. Zitka and K. Bouzek, J. Appl. Electrochem., 41, 1043 (2011).CrossRefGoogle Scholar
  4. 4.
    K. Zeng and D. Zhang, Progress in Energy and Combustion Sci., 36, 307 (2010).CrossRefGoogle Scholar
  5. 5.
    J. Qiao, J. Fu, R. Lin, J. Ma and J. Liu, Polymer, 51, 4850 (2010).CrossRefGoogle Scholar
  6. 6.
    Y.-C. Cao, X. Wu and K. Scott, Int. J. Hydrogen Energy, 37, 9524 (2012).CrossRefGoogle Scholar
  7. 7.
    X. Wu and K. Scott, J. Power Sources, 214, 124 (2012).CrossRefGoogle Scholar
  8. 8.
    C.Y. Hung, S.-D. Li, C.-C. Wang and C.-Y. Chen, J. Membr. Sci., 389, 197 (2012).CrossRefGoogle Scholar
  9. 9.
    J. Fang and P. K. Shen, J. Membr. Sci., 285, 317 (2006).CrossRefGoogle Scholar
  10. 10.
    G. Wang, Y. Weng, D. Chu, D. Xie and R. Chen, J. Membr. Sci., 326, 4 (2009).CrossRefGoogle Scholar
  11. 11.
    J.R. Varcoe and R.C.T. Slade, Electrochem. Commun., 5, 662 (2003).CrossRefGoogle Scholar
  12. 12.
    L. Jheng, S. L. Hsu, B. Lin and Y. Hsu, J. Membr. Sci., 460, 160 (2014).CrossRefGoogle Scholar
  13. 13.
    D. Stoica, L. Ogier, L. Akrour, F. Alloin and J.-F. Fauvarque, Electrochim. Acta, 53, 1596 (2007).CrossRefGoogle Scholar
  14. 14.
    J. Chattopadhyay, R. Srivastava and P.K. Srivastava, Korean J. Chem. Eng., 30, 1571 (2013).CrossRefGoogle Scholar
  15. 15.
    A. Boubakri, N. Helali, M. Tlili and M.B Amor, Korean J. Chem. Eng., 31, 461 (2014).CrossRefGoogle Scholar
  16. 16.
    G.-J. Hwang and H. Ohya, J. Membr. Sci., 149, 163 (1998).CrossRefGoogle Scholar
  17. 17.
    G.-J. Hwang and H. Ohya, J. Membr. Sci., 140, 195 (1998).CrossRefGoogle Scholar
  18. 18.
    T. Sata, M. Tsujimoto, T. Yamaguchi and K. Matsusaki, J. Membr. Sci., 112, 161 (1996).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2015

Authors and Affiliations

  • Gab-Jin Hwang
    • 1
  • Soo-Gon Lim
    • 2
  • Soo-Yeon Bong
    • 1
  • Cheol-Hwi Ryu
    • 1
  • Ho-Sang Choi
    • 3
    Email author
  1. 1.Grad. School, Department Green EnergyHoseo UniversityAsan City, ChungnamKorea
  2. 2.Energy & Machinery Korea Co., LtdChangwonKorea
  3. 3.Department Chemical EngineeringKyungil UniversityGyeongsanKorea

Personalised recommendations