Korean Journal of Chemical Engineering

, Volume 32, Issue 4, pp 583–596 | Cite as

A unified approach for proportional-integral-derivative controller design for time delay processes

  • Mohammad Shamsuzzoha
Process Systems Engineering, Process Safety


An analytical design method for PI/PID controller tuning is proposed for several types of processes with time delay. A single tuning formula gives enhanced disturbance rejection performance. The design method is based on the IMC approach, which has a single tuning parameter to adjust the performance and robustness of the controller. A simple tuning formula gives consistently better performance as compared to several well-known methods at the same degree of robustness for stable and integrating process. The performance of the unstable process has been compared with other recently published methods which also show significant improvement in the proposed method. Furthermore, the robustness of the controller is investigated by inserting a perturbation uncertainty in all parameters simultaneously, again showing comparable results with other methods. An analysis has been performed for the uncertainty margin in the different process parameters for the robust controller design. It gives the guidelines of the M s setting for the PI controller design based on the process parameters uncertainty. For the selection of the closed-loop time constant, (τ c ), a guideline is provided over a broad range of θ/τ ratios on the basis of the peak of maximum uncertainty (M s ). A comparison of the IAE has been conducted for the wide range of θ/τ ratio for the first order time delay process. The proposed method shows minimum IAE in compared to SIMC, while Lee et al. shows poor disturbance rejection in the lag dominant process. In the simulation study, the controllers were tuned to have the same degree of robustness by measuring the M s , to obtain a reasonable comparison.


PI/PID Controller Tuning IMC Method Unstable Delay Process Integrating Delay Process Disturbance Rejection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.D. Desborough and R.M. Miller, Increasing customer value of industrial control performance monitoring—Honeywell’s experience, in Chemical Process Control -VI AIChE Symposium Series, Tuscon, Arizona, Jan. 2001, 2002.Google Scholar
  2. 2.
    M. Kano and M. Ogawa, J. Process Control, 20, 969 (2010).CrossRefGoogle Scholar
  3. 3.
    D. Rivera, M. Morari and S. Skogestad, Ind. Eng. Chem. Process. Des. Dev., 25, 252 (1986).CrossRefGoogle Scholar
  4. 4.
    M. Morari and E. Zafiriou, Robust Process Control, NJ: Prentice-Hall Englewood Cliffs, NJ (1989).Google Scholar
  5. 5.
    I. Horn, J. Arulandu, J. Christopher, J. VanAntwerp and R.D. Braatz, Ind. Eng. Chem. Res., 35, 3437 (1996).CrossRefGoogle Scholar
  6. 6.
    Y. Lee, S. Park, M. Lee and C. Brosilow, AIChE J., 44, 106 (1998).CrossRefGoogle Scholar
  7. 7.
    S. Skogestad, J. Process Control, 13, 291 (2003).CrossRefGoogle Scholar
  8. 8.
    I.-L. Chien and P. Fruehauf, Chem. Eng. Progress, 86, 33 (1990).Google Scholar
  9. 9.
    M. Shamsuzzoha and M. Lee, Ind. Eng. Chem. Res., 46, 2077 (2007).CrossRefGoogle Scholar
  10. 10.
    D. Seborg, T. Edgar and D. Mellichamp, Process Dynamics and Control, New York, Wiley (2004).Google Scholar
  11. 11.
    D. Chen and D. Seborg, Ind. Eng. Chem. Res., 41, 4807 (2002).CrossRefGoogle Scholar
  12. 12.
    Y. Lee, J. Lee and S. Park, Chem. Eng. Sci., 55, 3481 (2000).CrossRefGoogle Scholar
  13. 13.
    X. Yang, Q. Wang, C. Hang and C. Lin, Ind. Eng. Chem. Res., 41, 4288 (2002).CrossRefGoogle Scholar
  14. 14.
    Y. Wang and W. Cai, Ind. Eng. Chem. Res., 41, 2910 (2002).CrossRefGoogle Scholar
  15. 15.
    W. Tan, H. Marquez and T. Chen, J. Process Control, 13, 203 (2003).CrossRefGoogle Scholar
  16. 16.
    T. Liu, W. Zhang and D. Gu, J. Process Control, 15, 559 (2005).CrossRefGoogle Scholar
  17. 17.
    C.S. Jung, H.K. Song and C.J. Hyun, J. Process Control, 9, 265 (1999).CrossRefGoogle Scholar
  18. 18.
    S. Majhi and D. Atherton, Automatica, 36, 1651 (2000).CrossRefGoogle Scholar
  19. 19.
    H. Kwak, S. Sung, I.-B. Lee and J. Park, Ind. Eng. Chem. Res., 38, 405 (1999).CrossRefGoogle Scholar
  20. 20.
    W. Zhang, D. Gu, W. Wang and X. Xu, Ind. Eng. Chem. Res., 43, 56 (2004).CrossRefGoogle Scholar
  21. 21.
    B.D. Tyreus and W. Luyben, Ind. Eng. Chem. Res., 31, 2625 (1992).CrossRefGoogle Scholar
  22. 22.
    W. Luyben, Ind. Eng. Chem. Res., 35, 3480 (1996).CrossRefGoogle Scholar
  23. 23.
    M. Shamsuzzoha and M. Lee, Korean J. Chem. Eng., 25, 637 (2008).CrossRefGoogle Scholar
  24. 24.
    M. Shamsuzzoha, S. Lee and M. Lee, Korean J. Chem. Eng., 26, 622 (2009).CrossRefGoogle Scholar
  25. 25.
    T. Vu and M. Korean J. Chem. Eng., 30, 546 (2013).Google Scholar
  26. 26.
    C. Grimholt and S. Skogestad, Optimal PI control and verification of the SIMC tuning rule, in Proceedings of the IFAC Conference on Advances in PID Control PID’12, Brescia (Italy) (2012).Google Scholar
  27. 27.
    S. Skogestad and C. Grimholt, The SIMC Method for Smooth PID Controller, in PID Control in the Third Millennium, Advances in Industrial Control, Springer, 147 (2012).CrossRefGoogle Scholar
  28. 28.
    J. G. Ziegler and N. B. Nichols, Trans. ASME, 64, 759 (1942).Google Scholar
  29. 29.
    M. Shamsuzzoha and S. Skogestad, J. Process Control, 20, 1220 (2010).CrossRefGoogle Scholar
  30. 30.
    W. Hu and G. Xiao, Ind. Eng. Chem. Res., 2011, 2461 (2011).CrossRefGoogle Scholar
  31. 31.
    F. Haugen, Modeling, Identification and Control, 31, 79 (2010).CrossRefGoogle Scholar
  32. 32.
    H. Seki and T. Shigemasa, J. Process Control, 20, 217 (2010).CrossRefGoogle Scholar
  33. 33.
    M. Veronesi and A. Visioli, J. Process Control, 20, 261 (2010).CrossRefGoogle Scholar
  34. 34.
    S. Alcantara, R. Vilanova and C. Pedret, J. Process Control, 23, 527 (2013).CrossRefGoogle Scholar
  35. 35.
    S. Alcantara, C. Pedret and R. Vilanova, J. Process Control, 20, 596 (2010).CrossRefGoogle Scholar
  36. 36.
    S. Alcantara, W. Zhang, C. Pedret, R. Vilanova and S. Skogestad, J. Process Control, 21, 976 (2011).CrossRefGoogle Scholar
  37. 37.
    S. Alcantara, R. Vilanova, C. Pedret and S. Skogestad, A look into robustness/performance and servo/regulation issues in PI tuning, in Proceedings of the IFAC Conference on Advances in PID Control PID’12, Brescia, Italy (2012).Google Scholar
  38. 38.
    J. Lee, W. Cho and T.F. Edgar, Ind. Eng. Chem. Res., 52, 12973 (2013).CrossRefGoogle Scholar
  39. 39.
    B.C. Torrico, M.U. Cavalcante, A. P. Braga, J. E. Normey-Rico and A. A. Albuquerque, Ind. Eng. Chem. Res., 52, 11646 (2013).CrossRefGoogle Scholar
  40. 40.
    M. Shamsuzzoha, Ind. Eng. Chem. Res., 52, 12973 (2013).CrossRefGoogle Scholar
  41. 41.
    V.M. Alfaro and R. Vilanova, Optimal robust tuning for 1DoF PI/PID control unifying FOPDT/SOPDT models, in IFAC Conference on Advances in PID Control PID’12, Brescia (Italy), March 28–30 (2012).Google Scholar
  42. 42.
    A. J. Isaksson and S. F. Graebe, IEE Proc.-Control Theory Appl., 149(1), 41 (2002).CrossRefGoogle Scholar
  43. 43.
    A. Visioli, Practical PID Control, London (UK), Springer (2006).Google Scholar
  44. 44.
    M. Shamsuzzoha, M. Skliar and M. Lee, Asia-Pacific J. Chem. Eng., 7, 93 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2014

Authors and Affiliations

  1. 1.Department of Chemical EngineeringKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations