Advertisement

Korean Journal of Chemical Engineering

, Volume 32, Issue 1, pp 30–36 | Cite as

Bubble point measurement and high pressure distillation column design for the environmentally benign separation of zirconium from hafnium for nuclear power reactor

  • Le Quang Minh
  • Gyeongmin Kim
  • Jongki Park
  • Moonyong Lee
Process Systems Engineering, Process Safety

Abstract

We examined the feasible separation of ZrCl4 and HfCl4 through high pressure distillation as environmentally benign separation for structural material of nuclear power reactor. The bubble point pressures of ZrCl4 and HfCl4 mixtures were determined experimentally by using an invariable volume equilibrium cell at high pressure and temperature condition range of 2.3–5.6 MPa and 440–490 °C. The experimental bubble point pressure data were correlated with Peng-Robinson equation of state with a good agreement. Based on the vapor-liquid equilibrium properties evaluated from the experimental data, the feasibility of high pressure distillation process for the separation of ZrCl4 and HfCl4 was investigated with its main design condition through rigorous simulation using a commercial process simulator, ASPEN Hysys. An enhanced distillation configuration was also proposed to improve energy efficiency in the distillation process. The result showed that a heat-pump assisted distillation with a partial bottom flash could be a promising option for commercial separation of ZrCl4 and HfCl4 by taking into account of both energy and environmental advantages.

Keywords

Zirconium Tetrachloride Hafnium Tetrachloride Nuclear Power Reactor Bubble Point Pressure Peng-Robinson Equation of State High Pressure Distillation Heat Pump 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.G. Franklink and P.M. Lang, Zirconium — Alloy Corrosion: A review based on an IAEA meeting, In Zirconium in Nuclear Industry, Ninth International Symposium, Philadelphia, 3–32 (1991).CrossRefGoogle Scholar
  2. 2.
    D. Sathiyamoorthy, S.M. Shetty, D. K. Bose and C. K. Gupta, High Temp. Mater. Processes, 18, 213 (1999).CrossRefGoogle Scholar
  3. 3.
    Annual Book of ASTM Standards: part 8, Nonferrous Metals- Nickel, Lead and Tin Alloys, Precious Metals, Primary Metals; Reactive Metals, American Society for Testing and Materials, Philadelphia (1976).Google Scholar
  4. 4.
    L. Moulin, P. Thouvenin and P. Brun, Paper presented at the 6th international conference on zirconium in the nuclear industy, Vancouver, B.C., Canada (1982).Google Scholar
  5. 5.
    D. J. Branken, M.S. Thesis, North-West University (2009).Google Scholar
  6. 6.
    I. V. Vinarov, Russ. Chem.Rev., 36, 522 (1967).CrossRefGoogle Scholar
  7. 7.
    R. Tricot, J. Nucl. Mater., 189, 277 (1992).CrossRefGoogle Scholar
  8. 8.
    L. Moulin, P. Thouvenin and P. Brun, ASTM Spec. Tech. Publ., 284, 37 (1984).Google Scholar
  9. 9.
    E. D. Lee and D. F. McLaughlin, US Patent, 4,913,778 (1990).Google Scholar
  10. 10.
    B. Nandi, N.R. Das and S.N. Bhattacharyya, Solvent Extr. Ion Exch., 1, 141 (1983).CrossRefGoogle Scholar
  11. 11.
    L. Delons, G. Picard and D. Tigreat, US Patent, 6,929,786 B2 (2005).Google Scholar
  12. 12.
    W. J. Kroll, A.W. Schleckten and L. A. Yerkes, Trans. Electrochem. Soc., 89, 263 (1946).CrossRefGoogle Scholar
  13. 13.
    N. D. Denisova, E.K. Safronov, A. I. Pustil’nik and O.N. Bystrova, Russ. J. Phys. Chem., 41, 30 (1967).Google Scholar
  14. 14.
    M. L. Bromberg, US Patent, 2,852,446 (1958).Google Scholar
  15. 15.
    H. Ishikuza, Eur. Patent, 45270 (1982).Google Scholar
  16. 16.
    A.R. Cruz Duarte, M.M. Mooijer-van den Heuvel, C.M.M. Duarte and C. J. Peters, Fluid Phase Equilib., 214, 121 (2003).CrossRefGoogle Scholar
  17. 17.
    R. P. Tangri, D.K. Bose and C. K. Gupta, J. Chem. Eng. Data, 40, 823 (1995).CrossRefGoogle Scholar
  18. 18.
    A. A. Palko, A. D. Ryan and D.W. Kuhn, J. Phys. Chem., 62, 319 (1958).CrossRefGoogle Scholar
  19. 19.
    J. D. Kim and D. R. Spink, J. Chem. Eng. Data, 19, 36 (1974).CrossRefGoogle Scholar
  20. 20.
    H. Li, H. H. Nersisyan, K. T. Park, S. B. Park, J.G. Kim, J.M. Lee and J. H. Lee, J. Nucl. Mater., 413, 107 (2011).CrossRefGoogle Scholar
  21. 21.
    C. C. Chen and P.M. Mathias, AIChE J., 48, 194 (2002).CrossRefGoogle Scholar
  22. 22.
    J. R. Elliot and C. T. Lira, Introductory chemical engineering thermodynamics, Prentice-Hall Inc., NJ (1999).Google Scholar
  23. 23.
    J. K. Kim and M. S. Kim, Fluid Phase Equilib., 238, 13 (2005).CrossRefGoogle Scholar
  24. 24.
    J.M. Lee, B. C. Lee and C.H. Cho, Korean J. Chem. Eng., 17, 510 (2000).CrossRefGoogle Scholar
  25. 25.
    S. Yunhai, L. Honglai, W. Kun, X. Wende and H. Ying, Fluid Phase Equilib., 234, 1 (2005).CrossRefGoogle Scholar
  26. 26.
    D.Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam., 15, 59 (1976).CrossRefGoogle Scholar
  27. 27.
    O. Annakou and P. Mitzey, Heat Recov. Sys. CHP, 15, 241 (1995).CrossRefGoogle Scholar
  28. 28.
    A. K. Jana, Appl. Energy, 87, 1477 (2010).CrossRefGoogle Scholar
  29. 29.
    J.M. Chew, C.C. S. Reddy and G. P. Rangaiah, Chem. Eng. Process., 76, 45 (2014).CrossRefGoogle Scholar
  30. 30.
    N. V. D. Long and M. Y. Lee, Energy, 57, 663 (2013).CrossRefGoogle Scholar
  31. 31.
    A. A. Kiss, S. J. L. Landaeta and C. A. I. Ferreira, Energy, 47, 531 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2014

Authors and Affiliations

  • Le Quang Minh
    • 1
  • Gyeongmin Kim
    • 1
  • Jongki Park
    • 2
  • Moonyong Lee
    • 1
  1. 1.School of Chemical EngineeringYeungnam UniversityGyeongsanKorea
  2. 2.Korea Institute of Energy ResearchDaejeonKorea

Personalised recommendations