Advertisement

Korean Journal of Chemical Engineering

, Volume 31, Issue 11, pp 2088–2093 | Cite as

Characterization of surface charge and zeta potential of colloidal silica prepared by various methods

  • Gyeong Sook Cho
  • Dong-Hyun Lee
  • Hyung Mi Lim
  • Seung-Ho Lee
  • Chongyoup Kim
  • Dae Sung KimEmail author
Polymer, Industrial Chemistry, Fluidization, Particle Technology

Abstract

Colloidal silica is prepared by hydrolysis of TEOS, direct oxidation of Si powder, condensation of silicic acid, etc. There are differences in surface reactivity of silica particle due to the preparation routes. Therefore, it is useful to evaluate surface properties accurately in order to understand the physiochemical properties of the products. The surface charge density, site density and zeta potential with respect to three types of colloidal silica were estimated and discussed. The surface charge density was different depending on preparation method. It is decreasing in the order of direct oxidation, ion exchange, TEOS hydrolysis. The zeta potential is decreasing in the order of ion exchange, TEOS hydrolysis, direct oxidation. The order in surface charge density is different from that in zeta potential because of the difference in stability depending on the particle size and surface charge density.

Keywords

Colloidal Silica Surface Property Zeta Potential Surface Charge Density Surface Site Density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. E. Bergna and W. O. Roberts, Colloidal silica: Fundamentals and applications, CRC Press, Boca Raton, Fl (1994).CrossRefGoogle Scholar
  2. 2.
    S. L. Chen, P. Dong, G. H. Yang and J. J. Yang, Ind. Eng. Chem. Res., 35, 4487 (1996).CrossRefGoogle Scholar
  3. 3.
    H. M. Lim, H. C. Shin, S. H. Huh and S. H. Lee, Solid State Phenomena, 124, 667 (2007).CrossRefGoogle Scholar
  4. 4.
    J. Y. Kim, Korea Patent, 10-2000-0045376 (2000).Google Scholar
  5. 5.
    Y. Lee, Y. R. Yoon and H. Rhee, Colloids Surf., 173, 109 (2000).CrossRefGoogle Scholar
  6. 6.
    R. K. Iler, US Patent, 881,371 (1972).Google Scholar
  7. 7.
    P. M. Dove and C. M. Craven, Geochimica et Cosmochimica Acta, 69, 4963 (2005).CrossRefGoogle Scholar
  8. 8.
    C. Labbez, B. Jönsson, I. Pochard, A. Nonat, and B. Cabane, J. Phys. Chem. B, 110, 9219 (2006).CrossRefGoogle Scholar
  9. 9.
    Z. Adamczyk, B. Jachimska and M. Kolasiñska, J. Colloid Interface Sci., 273, 668 (2004).CrossRefGoogle Scholar
  10. 10.
    J. A. Schwarz, C. T. Driscoll and A. K. Bhanot, J. Colloid Interface Sci., 97, 55 (1984).CrossRefGoogle Scholar
  11. 11.
    Z. Chu, W. Liu, H. Tang, T. Qian, S. Li, Z. Li and G. Wu, J. Colloid Interface Sci., 252, 426 (2002).CrossRefGoogle Scholar
  12. 12.
    U. Paik, J. Y. Kim and V. A. Hackley, Mater. Chem. Phys., 91, 205 (2005).CrossRefGoogle Scholar
  13. 13.
    G. S. Cho, D.-H. Lee, D. S. Kim, H. M. Lim, C. Y. Kim and S.-H. Lee, Korean Chem. Eng. Res., 51, 622 (2013).CrossRefGoogle Scholar
  14. 14.
    J. S. Ko, Y. J. Kwark, M. S. Khil, Y. D. Kim, J. H. Kim, H. D. Ghim, D. I. Yoo, Y. S. Shin, T. H. Oh, W. J. Lee and H. G. Jeong, Chonnam National University Press, Korea (2008).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2014

Authors and Affiliations

  • Gyeong Sook Cho
    • 1
    • 2
  • Dong-Hyun Lee
    • 1
  • Hyung Mi Lim
    • 1
  • Seung-Ho Lee
    • 1
  • Chongyoup Kim
    • 2
  • Dae Sung Kim
    • 1
    Email author
  1. 1.Eco-Composite Materials CenterKorea Institute of Ceramic Engineering & TechnologySeoulKorea
  2. 2.Department of Chemical & Biological EngineeringKorea UniversitySeoulKorea

Personalised recommendations