Korean Journal of Chemical Engineering

, Volume 31, Issue 7, pp 1187–1193 | Cite as

Preparation and characterization of nanocomposite heterogeneous cation exchange membranes modified by silver nanoparticles

  • Maryam Zarrinkhameh
  • Akbar ZendehnamEmail author
  • Sayed Mohsen HosseiniEmail author
Environmental Engineering


We prepared polyvinylchloride based nanocomposite heterogeneous cation exchange membranes by solution casting technique using cation exchange resin powder as functional groups agent and tetrahydrofuran as solvent. Silver nanoparticles were also used as fillers in membrane fabrication. The effect of silver nanoparticles concentration in casting solution on membrane physico/chemical and antibacterial characteristics was studied. The SEM images showed compact structure for the modified membranes. X-ray diffraction results also revealed that membrane crystallinity was clearly changed by increase of nanoparticle concentration. Membrane selectivity and transport number were enhanced initially by increase in nanoparticle content up to 4%wt in prepared membrane, and then showed decreasing trend by more increase in additive concentration from 4 to 8%wt. Selectivity and transport number were enhanced another time by further increase in nanoparticle loading ratio from 8 to 16%wt. Opposite trend was found for the membranes’ average grain size by variation in additive content. Ionic flux was also clearly enhanced by using Ag nanoparticles in membrane matrix. Moreover, modified membranes showed good ability in decrease of Escherichia coli growth rate.


Mixed Matrix Membrane Ion Exchange Silver Nanoparticles Fabrication/Characterization Antibacterial Property/Escherichia coli Growth Rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. K. Nagarale, G. S. Gohil, V. K. Shahi, G. S. Trivedi and R. Rangarajan, J. Colloid Interface Sci., 277, 162 (2004).CrossRefGoogle Scholar
  2. 2.
    S. M. Hosseini, S. S. Madaeni and A. R. Khodabakhshi, Sep. Sci. Technol., 45, 2308 (2010).CrossRefGoogle Scholar
  3. 3.
    T. Xu, J. Membr. Sci., 263, 1 (2005).CrossRefGoogle Scholar
  4. 4.
    K. Hideo, K. Tsuzura and H. Shimizu, Ion exchange membranes, in: K. Dorfner (Ed.), Ion Exchangers, Walter de Gruyter, Berlin (1991).Google Scholar
  5. 5.
    H. Strathmann, Electrodialysis and related processes, in: R.D. Noble, S. A. Stern (Eds.), Membrane Separation Technology-Principles and Applications, Elsevier Science B.V., 214 (1995).Google Scholar
  6. 6.
    M. Juda and W. A. McRac, J. Am. Chem. Soc., 72, 1044 (1950).CrossRefGoogle Scholar
  7. 7.
    A.G. Winger, G.W. Bodamer and R. Kunin, J. Electrochem. Soc., 100, 178 (1953).CrossRefGoogle Scholar
  8. 8.
    G. Pourcelly and C. Gavach, Electrodialysis water splitting-application of electrodialysis with bipolar membranes, in: A. J. B. Kemperman (Ed.), Handbook on Bipolar Membrane Technology, Twente University Press, Enschede, 17 (2000).Google Scholar
  9. 9.
    T. Xu, Desalination, 140, 247 (2001).CrossRefGoogle Scholar
  10. 10.
    G. Daufin, J. P. Escudier, H. Carrere, S. Berot, L. Fillaudeau and M. Decloux, Food and Bioproducts Processing, 79, 89 (2001).CrossRefGoogle Scholar
  11. 11.
    T. Tarvainen, B. Svarfvar, S. Akerman, J. Savolainen, M. Karhu, P. Paronen and K. Jarvinen, Biomaterials, 20, 2177 (1999).CrossRefGoogle Scholar
  12. 12.
    Y. H. Kim and S. H. Moon, J. Chem. Technol. Biotechnol., 76, 169 (2001).CrossRefGoogle Scholar
  13. 13.
    G. Saracco, Annali di Chimica, 93, 817 (2003).Google Scholar
  14. 14.
    L. Bazinet, F. Lamarche and D. Ippersiel, Trends in Food Sci. Technol., 9, 107 (1998).CrossRefGoogle Scholar
  15. 15.
    T. Xu, Resour. Conserv. Recycl., 37, 1 (2002).Google Scholar
  16. 16.
    S. Hirose, A. Shimizu and T. Nose, J. Appl. Polym. Sci., 23, 3193 (1979).CrossRefGoogle Scholar
  17. 17.
    S. Hirose and E. Yasukawa, J. Appl. Polym. Sci., 26, 1039 (1981).CrossRefGoogle Scholar
  18. 18.
    O. Hiroshi, R. Kazuhiko and U. Tadashi, J. Membr. Sci., 83, 199 (1993).CrossRefGoogle Scholar
  19. 19.
    M. Bodzek and K. Konieczny, J. Membr. Sci., 61, 131 (1991).CrossRefGoogle Scholar
  20. 20.
    R. Varma, The medical relevance of PVC, Medical Device & Diagnostic Industry, 19 (2007).Google Scholar
  21. 21.
    S. M. Hosseini, S. S. Madaeni, A. R. Khodabakhshi and A. Zendehnam, J. Membr. Sci., 365, 438 (2010).CrossRefGoogle Scholar
  22. 22.
    J.M. Thomassin, J. Kollar, G. Caldarella, A. Germain, R. Jerome and C. Detrembleur, J. Membr. Sci., 303, 252 (2007).CrossRefGoogle Scholar
  23. 23.
    S. M. Hosseini, S. S. Madaeni and A. R. Khodabakhshi, J. Appl. Polym. Sci., 118, 3371 (2010).CrossRefGoogle Scholar
  24. 24.
    S. Pourjafar, A. Rahimpour and M. Jahanshahi, J. Ind. Eng. Chem., 18, 1398 (2012).CrossRefGoogle Scholar
  25. 25.
    M. Bellantone, N. J. Coleman and L. L. Hench, J. Biomed. Mater. Res., 51, 484 (2000).CrossRefGoogle Scholar
  26. 26.
    S. H. Jeong, S.Y. Yeo and S. C. Yi, J. Mater. Sci., 40, 5407 (2005).CrossRefGoogle Scholar
  27. 27.
    Y. L. Wang, Y. Z. Wan, X. H. Dong, G. X. Cheng, H.M. Tao and T. Y. Wen, Carbon, 36, 1567 (1998).CrossRefGoogle Scholar
  28. 28.
    V. K. Shahi, G. S. Trivedi, S. K. Thampy and R. Rangarajan, J. Colloid Interface Sci., 262, 566 (2003).CrossRefGoogle Scholar
  29. 29.
    G. S. Gohil, V.K. Shahi and R. Rangarajan, J. Membr. Sci., 240, 211 (2004).CrossRefGoogle Scholar
  30. 30.
    A. Zendehnam, M. Arabzadegan, S.M. Hosseini, N. Robatmili and S. S. Madaeni, Korean J. Chem. Eng., 30(6), 1265 (2013).CrossRefGoogle Scholar
  31. 31.
    A. Elshabini and F. D Barlow, Thin film technology Handbook, McGraw-Hill (1997).Google Scholar
  32. 32.
    D. K. Reily, A. T. Pavia and P.G. Beatty, American J. Medicine, 97/6, 509 (1994).CrossRefGoogle Scholar
  33. 33.
    A. Sirinivasan, T. Karchmer, A. Richards, X. Song and T. M. Perl, Infection Control and Hospital Epidemiology, 27, 38 (2006).CrossRefGoogle Scholar
  34. 34.
    S. M. Hosseini, S. S. Madaeni and A. R. Khodabakhshi, J. Membr. Sci., 362, 550 (2010).CrossRefGoogle Scholar
  35. 35.
    X. Li, Z. Wang, H. Lu, C. Zhao, H. Na and C. Zhao, J. Membr. Sci., 254, 147 (2005).CrossRefGoogle Scholar
  36. 36.
    L. Erertovr, Physics of thin films, 2nd Ed., Plenum Press (1986).Google Scholar
  37. 37.
    V. K. Shahi, S. K. Thampy and R. Rangarajan, J. Membr. Sci., 158, 77 (1999).CrossRefGoogle Scholar
  38. 38.
    J. Kerres, W. Cui, R. Disson and W. Neubrand, J. Membr. Sci., 139, 211 (1998).CrossRefGoogle Scholar
  39. 39.
    D. R. Lide, CRC Handbook of chemistry and physics, CRC Press, 87th Ed., 2006–2007.Google Scholar
  40. 40.
    R. K. Nagarale, V.K. Shahi, S. K. Thampy and R. Rangarajan, React. Funct. Polym., 61, 131 (2004).CrossRefGoogle Scholar
  41. 41.
    M. S. Kang, Y. J. Choi, I. J. Choi, T. H. Yoon and S.H. Moon, J. Membr. Sci., 216, 39 (2003).CrossRefGoogle Scholar
  42. 42.
    H. Lin and B.D. Freeman, J. Mol. Struct., 739, 74 (2005).Google Scholar
  43. 43.
    A. Ebadi Amooghin, H. R. Sanaeepur, A.R. Moghadassi, A. Kargari, D. Ghanbari and Z. Sheikhi Mehrabadi, Sep. Sci. Technol., 45, 1385 (2010).CrossRefGoogle Scholar
  44. 44.
    K. Vasilev, J. Cook and H. J. Griesser, Expert Review of Medical Devices, 6/5, 553 (2009).CrossRefGoogle Scholar
  45. 45.
    S. Y. Park and J. Choi, Environ. Eng. Res., 15(1), 23 (2010).CrossRefGoogle Scholar
  46. 46.
    I. Sondi and B. S. Sondi, J. Colloid Interface Sci., 275, 177 (2004).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2014

Authors and Affiliations

  1. 1.Thin Film Laboratory, Department of Physic, Faculty of ScienceArak UniversityArakIran
  2. 2.Department of Chemical Engineering, Faculty of EngineeringArak UniversityArakIran

Personalised recommendations