Advertisement

Korean Journal of Chemical Engineering

, Volume 31, Issue 6, pp 1021–1027 | Cite as

Acid Black 172 dye adsorption from aqueous solution by hydroxyapatite as low-cost adsorbent

  • Gabriela Ciobanu
  • Maria Harja
  • Lacramioara Rusu
  • Anca Mihaela Mocanu
  • Constantin Luca
Environmental Engineering

Abstract

The Acid Black 172 dye adsorption on the uncalcined hydroxyapatite nanopowder was investigated. The hydroxyapatite prepared by wet coprecipitation method has high specific surface area of 325 m2/g and crystal sizes smaller than 70 nm. The batch adsorption experiments revealed that under the optimum adsorption conditions (pH 3, hydroxyapatite dosage 2 g/L, initial dye concentration 400 mg/L and temperature 20 °C) the dye removal efficiency was 95.78% after 1 h of adsorption. The adsorption kinetics was best described by the pseudo-second order kinetic model. The intraparticle diffusion model shows that intraparticle diffusion is not the sole rate-limiting step; the mass transfer also influences the adsorption process in its initial period. The Langmuir isotherm model best represented the equilibrium experimental data, and the maximum adsorption capacity (q m ) was 312.5 mg/g.

Keywords

Hydroxyapatite Acid Black 172 Dye Adsorption Isotherms Kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Bhatnagar and A. K. Minocha, Indian J. Chem. Technol., 13, 203 (2006).Google Scholar
  2. 2.
    C. Liu, H. Xu, H. Li, L. Liu, L. Xu and Z. Ye, Korean J. Chem. Eng., 28, 1126 (2011).CrossRefGoogle Scholar
  3. 3.
    P. Pandit and S. Basu, Environ. Sci. Technol., 38, 2435 (2004).CrossRefGoogle Scholar
  4. 4.
    P. Luo, B. Zhang, Y. Zhao, J. Wang, H. Zhang and J. Liu, Korean J. Chem. Eng., 28, 800 (2011).CrossRefGoogle Scholar
  5. 5.
    L. Liu, Y. Wan, Y. Xie, R. Zhai, B. Zhang and J. Liu, Chem. Eng. J., 187, 210 (2012).CrossRefGoogle Scholar
  6. 6.
    M. Shirmardi, A. H. Mahvi, B. Hashemzadeh, A. Naeimabadi, G. Hassani and M. V. Niri, Korean J. Chem. Eng., 28, 1126 (2011).CrossRefGoogle Scholar
  7. 7.
    P. Luo, Y. Zhao, B. Zhang, J. Liu, Y. Yang and J. Liu, Water Res., 44, 1489 (2010).CrossRefGoogle Scholar
  8. 8.
    M. Harja, G. Buema, D.M. Sutiman, C. Munteanu and D. Bucur, Korean J. Chem. Eng., 29, 1735 (2012).CrossRefGoogle Scholar
  9. 9.
    G. Ciobanu and G. Carja, Desalination, 250, 698 (2010).CrossRefGoogle Scholar
  10. 10.
    J. C. Elliott, Structure and chemistry of the apatites and other calcium orthophosphates, Elsevier Press, Amsterdam (1994).Google Scholar
  11. 11.
    G. Ciobanu, D. Ignat, G. Carja and C. Luca, Environ. Eng. Manage. J., 8, 1347 (2009).Google Scholar
  12. 12.
    G. Ciobanu, S. Ilisei, M. Harja and C. Luca, Sci. Adv. Mater., 5, 1090 (2013).CrossRefGoogle Scholar
  13. 13.
    Y. Hannachi, N. A. Shapovalov and A. Hannachi, Korean J. Chem. Eng., 27, 152 (2010).CrossRefGoogle Scholar
  14. 14.
    F. Beffa and G. Back, Rev. Prog. Color. Relat. Top., 14, 33 (1984).CrossRefGoogle Scholar
  15. 15.
    J. S. Bae and H. S. Freeman, Dyes Pigm., 73, 126 (2007).CrossRefGoogle Scholar
  16. 16.
    G. Zengin, H. Ozgunay, E.M. Ayan and M.M. Mutlu, Pol. J. Environ. Stud., 21, 499 (2012).Google Scholar
  17. 17.
    L. N. Du, B. Wang, G. Li, S. Wang, D. E. Crowley and Y. H. Zhao, J. Hazard. Mater., 205–206, 47 (2012).CrossRefGoogle Scholar
  18. 18.
    Y. Yang, G. Wang, B. Wang, Z. Li, X. Jia, Q. Zhou and Y. Zhao, Bioresour. Technol., 102, 828 (2011).CrossRefGoogle Scholar
  19. 19.
    M. N. Khan and A. Sarwar, Surf. Rev. Lett., 14, 461 (2007).CrossRefGoogle Scholar
  20. 20.
    S. Lagergren, K. Sven. Vetenskapsakad. Handl., 24, 1 (1898).Google Scholar
  21. 21.
    Y. S. Ho and G. McKay, Chem. Eng. J., 70, 115 (1998).CrossRefGoogle Scholar
  22. 22.
    W. J. Weber Jr. and J. C. Morris, J. Sanitary Eng. Div. Proceed. Am. Soc. Civil Eng., 89, 31 (1963).Google Scholar
  23. 23.
    I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).CrossRefGoogle Scholar
  24. 24.
    H.M. F. Freundlich, Z. Phys. Chem., 57, 385 (1906).Google Scholar
  25. 25.
    I. S. Harding, N. Rashid and K. A. Hing, Biomaterials, 26, 6818 (2005).CrossRefGoogle Scholar
  26. 26.
    M. Shirzad-Siboni, S. J. Jafari, M. Farrokhi, J. K. Yang, Environ. Eng. Res., 18, 247 (2013).CrossRefGoogle Scholar
  27. 27.
    A. Özer, G. Akkaya and M. Turabik, J. Hazard. Mater., 135, 355 (2006).CrossRefGoogle Scholar
  28. 28.
    X. J. Xiong, X. J. Meng and T. L. Zheng, J. Hazard. Mater., 175, 241 (2010).CrossRefGoogle Scholar
  29. 29.
    K. R. Hall, L. C. Eagleton, A. Acrivos and T. Vermeule, Ind. Eng. Chem. Fund., 5, 212 (1966).CrossRefGoogle Scholar
  30. 30.
    T.W. Weber and R. K. Chakravorti, J. Am. Inst. Chem. Eng., 20, 228 (1974).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2014

Authors and Affiliations

  • Gabriela Ciobanu
    • 1
  • Maria Harja
    • 1
  • Lacramioara Rusu
    • 2
  • Anca Mihaela Mocanu
    • 1
  • Constantin Luca
    • 1
  1. 1.Faculty of Chemical Engineering and Environmental ProtectionGheorghe Asachi Technical University of IasiIasiRomania
  2. 2.Faculty of EngineeringVasile Alecsandri University of BacauBacauRomania

Personalised recommendations