Korean Journal of Chemical Engineering

, Volume 31, Issue 4, pp 548–557 | Cite as

Green synthesis of silver nanoparticles using plant extracts

  • Mansour Ghaffari-Moghaddam
  • Robabeh Hadi-Dabanlou
  • Mostafa Khajeh
  • Mansoureh Rakhshanipour
  • Kamyar Shameli
Review Paper

Abstract

The strategy for design of new nanometals was developed due to their wide applications in many fields. One of the most important nanometals is silver nanoparticles (AgNPs) because of their extensive applications in biotechnology and biomedical fields. AgNPs were usually synthesized by using chemical and physical methods. In the chemical methods, various toxic chemicals are used, which are harmful to the health of living organisms. Therefore, the AgNPs were synthesized by using biological methods based on green chemistry for reducing the toxic chemicals. There are various resources for green synthesis of AgNPs, such as bacteria, fungi, enzyme and plant extracts. The green synthesis of AgNPs involves three main steps: the selection of the solvent medium, the selection of environmentally reducing agents, and the selection of non-toxic substances for the stability of AgNPs. The biosynthesis of AgNPs using plant extracts is more favorable than other biological methods because of removing the elaborate process of maintaining cell cultures. It can be also suitably scaled up for large scale production of AgNPs. This review focuses on green synthesis of AgNPs using various plant extracts.

Keywords

Nanometals Silver Nanoparticles Plant Extracts Biosynthesis Green Synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. R. Bardajee, Z. Hooshyar and H. Rezanezhad, J. Inorg. Biochem., 117, 367 (2012).Google Scholar
  2. 2.
    S. Prashanth, I. Menaka, R. Muthezhilan and N. Sharma, Int. J. Eng. Sci. Technol., 3, 6235 (2011).Google Scholar
  3. 3.
    A. Dror-Ehre, H. Mamane, T. Belenkova, G. Markovich and A. Adin, J. Colloid Interface Sci., 339, 521 (2009).Google Scholar
  4. 4.
    M.B. Ahmad, J. J. Lim, K. Shameli, N. A. Ibrahim, M.Y. Tay and B.W. Chieng, Chem. Cent. J., 6, 101 (2012).Google Scholar
  5. 5.
    S. Honary, K. Ghajar, P. Khazaeli and P. Shalchian, Trop. J. Pharm. Res., 10, 69 (2011).Google Scholar
  6. 6.
    N. Savithramma, M. Linga Rao, K. Rukmini and P. Suvarnalatha devi, Int. J. Chem. Technol. Res., 3, 1394 (2011).Google Scholar
  7. 7.
    I. Willner, R. Baron and B. Willner, Adv. Mater., 18, 1109 (2006).Google Scholar
  8. 8.
    Y. Konishi, K. Ohno, N. Saitoh, T. Nomura, S. Nagamine, H. Hishida, Y. Takahashi and T. Uruga, J. Biotechnol., 128, 648 (2007).Google Scholar
  9. 9.
    S. Shankar, A. Rai, A. Ahmad and M. Sastry, J. Colloid Interface Sci., 275, 496 (2005).Google Scholar
  10. 10.
    D. Philip, Phys. E, 42, 1417 (2010).Google Scholar
  11. 11.
    G. P. C. Rao and J. Yang, Appl. Spectrosc., 64, 1094 (2010).Google Scholar
  12. 12.
    K. J. Sreeram, M. Nidhin and B. U. Nair, Bull. Mater. Sci., 31, 937 (2008).Google Scholar
  13. 13.
    D. Kim, S. Jeong and J. Moon, Nanotechnology, 17, 4019 (2006).Google Scholar
  14. 14.
    J. Zhu, S. Liu, O. Palchik, Y. Koltypin and A. Gedanken, Langmuir, 16, 6396 (2000).Google Scholar
  15. 15.
    A. K. Mittal, Y. Chisti and U. C. Banerjee, Biotechnol. Adv., 31, 346 (2013).Google Scholar
  16. 16.
    M. Ghaffari-Moghaddam and R. Hadi-Dabanlou, J. Ind. Eng. Chem., 20, 739 (2014).Google Scholar
  17. 17.
    M. Vijayakumar, K. Priya, F. T. Nancy, A. Noorlidah and A. B. A. Ahmed, Ind. Crop. Prod., 41, 235 (2013).Google Scholar
  18. 18.
    K. Roy, S. Biswas and P. C. Banerjee, Res. J. Pharm. Biol. Chem. Sci., 4, 1271 (2013).Google Scholar
  19. 19.
    S. Supraja, S. Mohammed Ali, N. Chakravarthy, A. Jayaprakash Priya, E. Sagadevan, M. K. Kasinathan, S. Sindhu and P. Arumugam, Int. J. ChemTech Res., 5, 271 (2013).Google Scholar
  20. 20.
    K. R. Kudle, M. R. Donda, R. Merugu, Y. Prashanthi and M. P. P. Rudra, Int. J. Nanomater. Biostruct., 3, 13 (2013).Google Scholar
  21. 21.
    J. Das, M. Paul Das and P. Velusamy. Spectrochim. Acta A, 104, 265 (2013).Google Scholar
  22. 22.
    Y. Subba Rao, Venkata S. Kotakadi, T. N. V. K. V. Prasad, A. V. Reddy and D.V.R. Sai Gopal, Spectrochim. Acta A, 103, 159 (2013).Google Scholar
  23. 23.
    M. R. Bindhu and M. Umadevi, Spectrochim. Acta A, 101, 184 (2013).Google Scholar
  24. 24.
    S. M. Roopan, Rohit, G. Madhumitha, A. A. Rahuman, C. Kamaraj, A. Bharathi and T.V. Surendra, Ind. Crop. Prod., 43, 631 (2013).Google Scholar
  25. 25.
    M. Karuppiah and R. Rajmohan, Mater. Lett., 97, 141 (2013).Google Scholar
  26. 26.
    P. P. Singh and C. Bhakat, Int. J. Sci. Res. Pub., 2, 1 (2012).Google Scholar
  27. 27.
    K. J. Rao and S. Paria, Mater. Res. Bull., 48, 628 (2013).Google Scholar
  28. 28.
    G. Singhal, R. Bhavesh, K. Kasariya, A. R. Sharma and R. P. Singh, J. Nanopart. Res., 13, 2981 (2011).Google Scholar
  29. 29.
    N. Phuphansri, A. Jimtaisong and S. Mookriang, 1 st Mae Fah Luang University International Conference, 1 (2012).Google Scholar
  30. 30.
    De. Baishya, N. Sharma and R. Bora, Arch. Appl. Sci. Res., 4, 2098 (2012).Google Scholar
  31. 31.
    T. Dhanalakshmia and S. Rajendran, Arch. Appl. Sci. Res., 4, 1289 (2012).Google Scholar
  32. 32.
    Y. Y. Loo, B.W. Chieng, M. Nishibuchi and S. Radu, Int. J. Nanomed., 7, 4263 (2012).Google Scholar
  33. 33.
    C. Mason, S. Vivekanandhan, M. Misra and A. K. Mohanty, World J. Nano Sci. Eng., 2, 47 (2012).Google Scholar
  34. 34.
    Y. Rout, S. Behera, A.K. Ojha and P. L. Nayak, J. Microbiol. Antimicrob., 4, 103 (2012).Google Scholar
  35. 35.
    S. Bandi and K. Vasundhara, J. Atom. Mol., 2, 282 (2012).Google Scholar
  36. 36.
    V. Gopinath, D. MubarakAli, S. Priyadarshini, N. Meera Priyadharsshini, N. Thajuddin and P. Velusamy, Colloids Surf., B, 96, 69 (2012).Google Scholar
  37. 37.
    G.V. White, P. Kerscher, R.M. Brown, J. D. Morella, W. McAllister, D. Dean and C. L. Kitchens, J. Nano Mater., 2012, 1 (2012).Google Scholar
  38. 38.
    N. Ahmad and S. Sharma, Green Chem., 2, 141 (2012).Google Scholar
  39. 39.
    M. Amin, F. Anwar, M.R. S. A. Janjua, M. A. Iqbal and U. Rashid, Int. J. Mol. Sci., 13, 9923 (2012).Google Scholar
  40. 40.
    L. Krishnasamy, K. Jayanthi and P. Ponmurugan, Discovery Life, 1, 3 (2012).Google Scholar
  41. 41.
    N. Geetha, K. Harini, J. Jerlin Showmya and K. Selva Priya, International Conference on Nuclear Energy, Environmental and Biological Sciences, 56 (2012).Google Scholar
  42. 42.
    K. Shameli, M. Bin Ahmad, A. Zamanian, P. Sangpour, P. Shabanzadeh, Y. Abdollahi and M. Zargar, Int. J. Nanomed., 7, 5603 (2012).Google Scholar
  43. 43.
    K. M. Kumar, M. Sinha, B. K. Manda, A. R. Ghosh, K. S. Kumar and P. S. Reddy, Spectrochim. Acta A, 91, 228 (2012).Google Scholar
  44. 44.
    C. Dipankar and S. Murugan, Colloids Surf., B, 98, 112 (2012).Google Scholar
  45. 45.
    K. Vijayaraghavan, S. P. Kamala Nalini, N. Udaya Prakash and D. Madhankumar, Colloids Surf., B, 94, 114 (2012).Google Scholar
  46. 46.
    K. Vijayaraghavan, S. P. Kamala Nalini, N. Udaya Prakash and D. Madhankumar, Mater. Lett., 75, 33 (2012).Google Scholar
  47. 47.
    A. Saxena, R.M. Tripathi, F. Zafar and P. Singh, Mater. Lett., 67, 91 (2012).Google Scholar
  48. 48.
    P. Kouvaris, A. Delimitis, V. Zaspalis, D. Papadopoulos, S. A. Tsipas and N. Michailidis, Mater. Lett., 76, 18 (2012).Google Scholar
  49. 49.
    K. Shameli, M. Bin Ahmad, E. A. Jaffar, A. Mulla, N. A. Ibrahim, P. Shabanzadeh, A. Rustaiyan, Y. Abdollahi, S. Bagheri, S. Abdol mohammadi, M. Sani Usman and M. Zidan, Molecules, 17, 8506 (2012).Google Scholar
  50. 50.
    D. Vijaya Raj, J. Anarkali, K. Rajathi and S. Sridhar, Int. J. Nanomater. Biostruct., 2, 11 (2012).Google Scholar
  51. 51.
    A.M. Awwad and N. M. Salem, J. Nanosci. Nanotechnol., 2, 125 (2012).Google Scholar
  52. 52.
    K. Mallikarjuna, G. Narasimha, G. R. Dillip, B. Praveen, B. Shreedhar, C. Sreelakshmi, B.V. S. Reddy and B. Deva Prasad Raju, Digest. J. Nanomater. Bios., 6, 181 (2011).Google Scholar
  53. 53.
    J. Sivakumar, C. Premkumar, P. Santhanam and N. S. African, Aust. J. Basic Appl. Sci., 3, 265 (2011).Google Scholar
  54. 54.
    T. P. Amaladhas, S. Sivagami, T. A. Devi, N. Ananthi and S. P. Velammal, Adv. Nat. Sci: Nanosci. Nanotechnol., 3, 1 (2012).Google Scholar
  55. 55.
    M. Vanaja and G. Annadurai, Appl. Nanosci., 3, 217 (2013).Google Scholar
  56. 56.
    R. Patil, M. Kokate and S. Kolekar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 91, 23 (2012).Google Scholar
  57. 57.
    N. Ahmad, S. Sharma and R. Rai, Adv. Mater. Lett., 3, 376 (2012).Google Scholar
  58. 58.
    A. K. Mondal, S. Mondal (Parui), S. Samanta and S, Mallick, Adv. Bio Res., 2, 122 (2011).Google Scholar
  59. 59.
    S. A. Babu and H. G. Prabu, Mater Lett., 65, 1675 (2011).Google Scholar
  60. 60.
    K. Velayutham, A. A. Rahuman, G. Rajakumar, T. Santhoshkumar, S. Marimuthu and C. Jayaseelan, Parasitol. Res., 111, 2329 (2012).Google Scholar
  61. 61.
    A. D. Dwivedi and K. Gopal, Colloids Surf., A, 369, 27 (2010).Google Scholar
  62. 62.
    P. C. Nagajyothi and K. D. Lee, J. Nanomat., 2011, 1 (2011).Google Scholar
  63. 63.
    G. Rajakumar and A. Abdul Rahuman, Acta Trop., 118, 196 (2011).Google Scholar
  64. 64.
    M. Vivek, P. S. Kumar, S. Steffi and S. Sudha, Avicenna J. Med. Biotechnol., 3, 143 (2011).Google Scholar
  65. 65.
    D.M. Ali, N. Thajuddin, K. Jeganathan and M. Gunasekaran, Colloids Surf., B, 85, 360 (2011).Google Scholar
  66. 66.
    S. Jacob, J. Finub and A. Narayanan, Colloids Surf., B, 91, 212 (2011).Google Scholar
  67. 67.
    S. Kaviya, J. Santhanalakshmi and B. Viswanathan, Nanotechnology, 2011, 5 (2011).Google Scholar
  68. 68.
    T. Prasad and E. Elumalai, Asian Pac. J. Trop. Biomed., 1, 439 (2011).Google Scholar
  69. 69.
    S. M. Ghoreishin, M. Behpour and M. Khayatkashani, Phys. E, 44, 97 (2011).Google Scholar
  70. 70.
    M. Zargar, A.A. Hamid, F. A. Bakar, M. N. Shamsudin, K. Shameli and F. Jahanshiri, Molecules., 16, 6667 (2011).Google Scholar
  71. 71.
    C. Krishnaraj, E. Jagan, S. Rajasekar, P. Selvakumar, P. Kalaichelvan and N. Mohan, Colloids Surf., B, 76, 50 (2010).Google Scholar
  72. 72.
    A. Singh, D. Jain, M. K. Upadhyay, N. Khandelwal and H. N. Verma, Dig J Nanomater. Bios., 5, 483 (2010).Google Scholar
  73. 73.
    A. Tripathy, A. M. Raichur, N. Chandrasekaran and T. C. Prathna, J. Nanopart. Res., 12, 237 (2010).Google Scholar
  74. 74.
    A. Bankar, B. Joshi, A. R. Kumar and S. Zinjarde, Colloids Surf., A: Physicochem. Eng. Aspects, 368, 58 (2010).Google Scholar
  75. 75.
    V. K. Shukla, R. P. Singh and A. C. Pandey, J. Alloys Compd., 507, 13 (2010).Google Scholar
  76. 76.
    S. Ankanna, T. Prasad, E. K. Elumalai and N. Savithramma, Digest J. Nanomater. Bios., 5, 369 (2010).Google Scholar
  77. 77.
    N. Ahmad, S. Sharma, V. Singh, S. Shamsi, A. Fatma and B. Mehta, Biotechnol. Res. Int., 2011, 1 (2011).Google Scholar
  78. 78.
    E. K. Elumalai, T. Prasad, V. Kambala, P. C. Nagajyothi and E. David, Arch. Appl. Sci. Res., 2, 76 (2010).Google Scholar
  79. 79.
    E. K. Elumalai, T. Prasad, J. Hemachandran, S. Viviyan Therasa, T. Thirumalai and E. Davi, Int. J. Pharm. Sci. Res., 2, 549 (2010).Google Scholar
  80. 80.
    R. Geethalakshmi and D. Sarada, Int. J. Eng. Sci. Technol., 2, 970 (2010).Google Scholar
  81. 81.
    A. Saxena, R. M. Tripathi and R. P. Singh, Digest J. Nanomater. Bios., 5, 427 (2010).Google Scholar
  82. 82.
    S. Ravindra, Y. M. Mohan, N. N. Reddy and K. M. Raju, Colloids Surf., A, 367, 31 (2010).Google Scholar
  83. 83.
    D. Jain, H.K. Daima, S. Kachhwaha and S. Kothari, Digest J. Nanomater. Bios., 4, 557 (2009).Google Scholar
  84. 84.
    J. Kesharwani, K.Y. Yoon, J. Hwang and M. Rai, J. Bionanosci., 3, 39 (2009).Google Scholar
  85. 85.
    A. K. Jha, K. Prasad and V. Kumar, Biotechnol. Prog., 25, 1476 (2009).Google Scholar
  86. 86.
    S. P. Dubey, M. Lahtinen and M. Sillanpää, Process Biochem., 45, 1065 (2010).Google Scholar
  87. 87.
    H. Bar, D.K. Bhui, G. P. Sahoo, P. Sarkar, S. Pyne and A. Misra, Colloids Surf., A: Physicochem. Eng. Aspects, 348, 212 (2009).Google Scholar
  88. 88.
    S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad and M. Sastry, Biotechnol. Prog., 22, 577 (2006).Google Scholar
  89. 89.
    S. S. Shankar, A. Ahmad and M. Sastry, Biotechnol. Prog., 19, 1627 (2003).Google Scholar
  90. 90.
    A. Gurav, T. Kodas, L. Wang, E. Kauppinen and J. Joutsensaari, Chem. Phys. Lett., 218, 314 (1994).Google Scholar
  91. 91.
    F. Kruis, H. Fissan and B. Rellinghaus, Mater. Sci. Eng. B, 69, 329 (2000).Google Scholar
  92. 92.
    M. Magnusson, K. Deppert, J. Malm, J. Bovin and L. Samuelson, J. Nanopart. Res., 1, 243 (1999).Google Scholar
  93. 93.
    A. Schmidt-Ott, J. Aerosol Sci., 19, 553 (1988).Google Scholar
  94. 94.
    F. Mafune, J. Kohno, Y. Takeda, T. Kondow and H. Sawabe, J. Phys. Chem. B, 104, 9111 (2000).Google Scholar
  95. 95.
    F. Mafune, J. Kohno, Y. Takeda, T. Kondow and H. Sawabe, J. Phys. Chem. B, 105, 5114 (2001).Google Scholar
  96. 96.
    A.V. Kabashin and M. Meunier, J. Appl. Phys., 94, 7941 (2003).Google Scholar
  97. 97.
    J. P. Sylvestre, A.V. Kabashin, E. Sacher, M. Meunier and J. H. T. Luong, J. Am. Chem. Soc., 126, 7176 (2004).Google Scholar
  98. 98.
    T. Tsuji, K. Iryo, N. Watanabe and M. Tsuji, Appl. Surf. Sci., 202, 80 (2002).Google Scholar
  99. 99.
    T. Tsuji, T. Kakita and M. Tsuji, Appl. Surf. Sci., 206, 314 (2003).Google Scholar
  100. 100.
    G. Compagnini, A.A. Scalisi and O. Puglisi, J. Appl. Phys., 94, 7874 (2003).Google Scholar
  101. 101.
    Y.H. Chen and C. S. Yeh, Colloids Surf. A: Physicochem. Eng. Aspects., 197, 133 (2002).Google Scholar
  102. 102.
    S. I. Dolgaev, A.V. Simakin, V.V. Voronov, G. A. Shafeev and F. Bozon-Verduraz, Appl. Surf. Sci., 186, 546 (2002).Google Scholar
  103. 103.
    K. Mavani and M. Shah, Int. J. Eng. Res. Technol., 2, 1 (2013).Google Scholar
  104. 104.
    K.C. Song, S. M. Lee, T. S. Park and B. S. Lee, Korean J. Chem. Eng., 26, 153 (2009).Google Scholar
  105. 105.
    M. U. Rashid, M. d. Khairu, H. Bhuiyan and M. E. Quayum, Dhaka Univ. J. Pharm. Sci., 12, 29 (2013).Google Scholar
  106. 106.
    P.V. Dong, C. H. Ha, L. T. Binh and J. Kasbohm, Int. Nano Lett., 2, 9 (2012).Google Scholar
  107. 107.
    M. Khajeh and K. Dastafkan, J. Appl. Spectrosc., 79, 788 (2012).Google Scholar
  108. 108.
    I. Sondi and B. Salopek-Sondi, J. Colloid Intrface Sci., 275, 177 (2004).Google Scholar
  109. 109.
    K.D. Bhatte, K.M. Deshmukh, Y.P. Patil, D.N. Sawant, S. I. Fujita, M. Arai and B. M. Bhanage, J. Partic., 10, 140 (2012).Google Scholar
  110. 110.
    J. R. Evanoff and G. Chumanov, J. Phys. Chem. B., 108, 13948 (2004).Google Scholar
  111. 111.
    L. Rodríguez-Sánchez, M. C. Blanco and M. A. López-Quintela, J. Phys. Chem., 104, 9883 (2000).Google Scholar
  112. 112.
    A. Pal, S. Shah and S. Devi, Mater. Chem. Phys., 114, 530 (2009).Google Scholar
  113. 113.
    X.M. Yan, J. Ni, M. Robbins, H. J. Park, W. Zhao and J.M. White, J. Nanopart. Res., 4, 525 (2002).Google Scholar
  114. 114.
    S. I. Hong, A. Duarte, G.A. Gonzalez and N. S. Kim, J. Electron. Packag., 135, 1 (2013), DOI:10.1115/1.4023528.Google Scholar
  115. 115.
    H. Reza Ghorbani, A. Akbar Safekordi, H. Attar and S.M. Rezayat Sorkhabadi, Chem. Biochem. Eng. Q., 25, 317 (2011).Google Scholar
  116. 116.
    M. Sastry, A. Ahmad, M. I. Khan and R. Kumar, Curr. Sci., 85, 162 (2003).Google Scholar
  117. 117.
    S. Shivaji, S. Madhu and S. Singh, Process Biochem., 46, 1800 (2011).Google Scholar
  118. 118.
    V. L. Das, R. Thomas, R. T. Varghese, E.V. Soniya, J. Mathew and E. K. Radhakrishnan, 3 Biotech, 1 (2013), DOI:10.1007/s13205-013-1030-8.Google Scholar
  119. 119.
    A. I. El-Batal, M. A. Amin, M.K. Shehata and M. A. H. Merehan, World Appl. Sci. J., 22, 1 (2013).Google Scholar
  120. 120.
    H. R. Ghorbani, J. Nanostruct. Chem., 3, 29 (2013).Google Scholar
  121. 121.
    C. Malarkodic, S. Rajeshkumars, K. Paulkumar, G. Gnanajobitha, M. Vanaja and G. Annadurai, Nanosci. Nanotechnol. Int. J., 3, 26 (2013).Google Scholar
  122. 122.
    N. Vigneshwaran, N.M. Ashtaputre, P. V. Varadarajan, R. P. Nachane, K.M. Paralikar and R.H. Balasubarmanya, Mater. Lett., 61, 1413 (2007).Google Scholar
  123. 123.
    M. Gajbhiye, J. Kesharwani, A. Ingel, A. Gade and M. Drarai, Nanomed., 5, 382 (2009).Google Scholar
  124. 124.
    P. Singh and R. B. Raja, Asian J. Exp. Biol. Sci., 2, 600 (2011).Google Scholar
  125. 125.
    G. Li, D. He, Y. Qian, B. Guan, S. Gao, Y. Cui, K. Yokoyama and L. Wang, Int. J. Mol. Sci., 13, 466 (2012).Google Scholar
  126. 126.
    S. Basavaraja, S.D. Balaji, A. Lagashetty, A. H. Rajasab and A. Venkataraman, Mater. Res. Bull., 43, 1164 (2008).Google Scholar
  127. 127.
    A. Syed, S. Saraswati, G. Ckandu and A. Ahmad, Spectrochim. Acta A, 114, 144 (2013).Google Scholar
  128. 128.
    S.V. Ganachari, R. Bhat, R. Deshpande and A. Venkataraman, Bio. Nano Sci., 2, 316 (2012).Google Scholar
  129. 129.
    H. Korbekandi, Z. Ashari, S. Iravani and S. Abbasi, Iran. J. Pharm. Res., 12, 289 (2013).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2014

Authors and Affiliations

  • Mansour Ghaffari-Moghaddam
    • 1
  • Robabeh Hadi-Dabanlou
    • 1
  • Mostafa Khajeh
    • 1
  • Mansoureh Rakhshanipour
    • 1
  • Kamyar Shameli
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceUniversity of ZabolZabolIran
  2. 2.Department of Chemistry, Faculty of ScienceUniversiti Putra Malaysia, Serdang UPMSelangorMalaysia

Personalised recommendations