Korean Journal of Chemical Engineering

, Volume 31, Issue 6, pp 1036–1042 | Cite as

Enhancement of lipid productivity by ethyl methane sulfonate-mediated random mutagenesis and proteomic analysis in Chlamydomonas reinhardtii

  • Bongsoo Lee
  • Gang-Guk Choi
  • Yoon-E. Choi
  • Minji Sung
  • Min S. Park
  • Ji-Won Yang


Microalgae-derived biomass has been considered as the most promising candidate for next generation biofuel due to its sustainability and biodegradability. In this study, microalgal strain Chlamydmonas reinhardtii was randomly mutagenized by using a chemical mutagen, ethyl methane sulfonate (EMS) to create mutants showing enhanced lipid production. We identified three random mutants that displayed high lipid production in the screening using Nile red staining. Among those, mutant #128 was selected as candidate for further studies. Our flow cytometry and confocal microscopy analysis revealed that mutant #128 contains larger and more abundant lipid bodies than that of wild-type. Moreover, mutant #128 showed 1.4-fold increased fatty acid methyl ester (FAME) content compared to wild-type under nitrogen depleted condition. In addition, mutant #128 grew faster and accumulated more biomass, resulting in high lipid production. 2D gel electrophoresis and MALDI-TOF analysis used for gene targeting revealed that β-subunit of mitochondrial ATP Synthase and two-component response regulator PilR may be involved in enhanced characteristics of mutant #128. These results show the possibilities of EMS mediated random mutagenesis in generation of mutants to produce high amount of lipid as well as further study for molecular mechanism of mutants.


Ethyl Methane Sulfonate (EMS) Random Mutagenesis Chlamydmonas reinhardtii Lipid Productivity Proteomics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. McKendry, Bioresour. Technol., 83, 37 (2002).CrossRefGoogle Scholar
  2. 2.
    P. S. Nigam and A. Singh, Prog. Energy Combust. Sci., 37, 52 (2011).CrossRefGoogle Scholar
  3. 3.
    T. M. Mata, A. A. Martins and N. S. Caetano, Renewable Sustainable Energy Rev., 14, 217 (2010).CrossRefGoogle Scholar
  4. 4.
    Y. Chisti, Biotechnol. Adv., 25, 294 (2007).CrossRefGoogle Scholar
  5. 5.
    T. Minowa, S.-y. Yokoyama, M. Kishimoto and T. Okakura, Fuel, 74, 1735 (1995).CrossRefGoogle Scholar
  6. 6.
    A. Ahmad, N. Yasin, C. Derek and J. Lim, Renewable Sustainable Energy Rev., 15, 584 (2011).CrossRefGoogle Scholar
  7. 7.
    P. T. Pienkos and A. Darzins, Biofuels, Bioprod. Biorefin., 3, 431 (2009).CrossRefGoogle Scholar
  8. 8.
    H. M. Amaro, A. Guedes and F. X. Malcata, Appl. Energy, 88, 3402 (2011).CrossRefGoogle Scholar
  9. 9.
    H. Rismani-Yazdi, B. Z. Haznedaroglu, C. Hsin and J. Peccia, Biotechnol. Biofuels, 5, 1 (2012).CrossRefGoogle Scholar
  10. 10.
    R. Radakovits, R. E. Jinkerson, S. I. Fuerstenberg, H. Tae, R. E. Settlage, J.L. Boore and M. C. Posewitz, Nat. Commun., 3, 686 (2012).CrossRefGoogle Scholar
  11. 11.
    S. S. Merchant, S. E. Prochnik, O. Vallon, E. H. Harris, S. J. Karpowicz, G.B. Witman, A. Terry, A. Salamov, L. K. Fritz-Laylin and L. Maréchal-Drouard, Science, 318, 245 (2007).CrossRefGoogle Scholar
  12. 12.
    A. Z. Worden, J.-H. Lee, T. Mock, P. Rouzé, M. P. Simmons, A. L. Aerts, A. E. Allen, M. L. Cuvelier, E. Derelle and M.V. Everett, Science, 324, 268 (2009).CrossRefGoogle Scholar
  13. 13.
    A. Eichler-Stahlberg, W. Weisheit, O. Ruecker and M. Heitzer, Planta, 229, 873 (2009).CrossRefGoogle Scholar
  14. 14.
    R. Radakovits, R. E. Jinkerson, A. Darzins and M. C. Posewitz, Eukaryotic Cell, 9, 486 (2010).CrossRefGoogle Scholar
  15. 15.
    U.W. Goodenough, Cell, 70, 533 (1992).CrossRefGoogle Scholar
  16. 16.
    E. H. Harris, Annu. Rev. Plant Biol., 52, 363 (2001).CrossRefGoogle Scholar
  17. 17.
    B. Zorin, Y. Lu, I. Sizova and P. Hegemann, Gene, 432, 91 (2009).CrossRefGoogle Scholar
  18. 18.
    L. L. Beer, E. S. Boyd, J.W. Peters and M. C. Posewitz, Curr. Opin. Biotechnol., 20, 264 (2009).CrossRefGoogle Scholar
  19. 19.
    M. Mobini-Dehkordi, I. Nahvi, H. Zarkesh-Esfahani, K. Ghaedi, M. Tavassoli and R. Akada, J. Biosci. Bioeng., 105, 403 (2008).CrossRefGoogle Scholar
  20. 20.
    Y. Li, D. Han, G. Hu, M. Sommerfeld and Q. Hu, Biotechnol. Bioeng., 107, 258 (2010).CrossRefGoogle Scholar
  21. 21.
    V. H. Work, R. Radakovits, R. E. Jinkerson, J. E. Meuser, L. G. Elliott, D. J. Vinyard, L. M. Laurens, G. C. Dismukes and M. C. Posewitz, Eukaryotic Cell, 9, 1251 (2010).CrossRefGoogle Scholar
  22. 22.
    M. H. Huesemann, T. S. Hausmann, R. Bartha, M. Aksoy, J. C. Weissman and J. R. Benemann, Appl. Biochem. Biotechnol., 157, 507 (2009).CrossRefGoogle Scholar
  23. 23.
    Y.-H. Kim, H.-J. Park, S.-H. Lee and J.-H. Lee, Korean J. Chem. Eng., 30, 413 (2013).CrossRefGoogle Scholar
  24. 24.
    K. Anandarajah, G. Mahendraperumal, M. Sommerfeld and Q. Hu, Appl. Energy, 96, 371 (2012).CrossRefGoogle Scholar
  25. 25.
    W. Chen, C. Zhang, L. Song, M. Sommerfeld and Q. Hu, J. Microbiol. Methods, 77, 41 (2009).CrossRefGoogle Scholar
  26. 26.
    M.M. Bradford, Anal. Biochem., 72, 248 (1976).CrossRefGoogle Scholar
  27. 27.
    A. Shevchenko and A. Shevchenko, Anal. Biochem., 296, 279 (2001).CrossRefGoogle Scholar
  28. 28.
    Y. Li, M. Horsman, B. Wang, N. Wu and C.Q. Lan, Appl. Microbiol. Biotechnol., 81, 629 (2008).CrossRefGoogle Scholar
  29. 29.
    Z. T. Wang, N. Ullrich, S. Joo, S. Waffenschmidt and U. Goodenough, Eukaryotic Cell, 8, 1856 (2009).CrossRefGoogle Scholar
  30. 30.
    T. Govender, L. Ramanna, I. Rawat and F. Bux, Bioresour. Technol., 114, 507 (2012).CrossRefGoogle Scholar
  31. 31.
    M. S. Cooper, W. R. Hardin, T.W. Petersen and R. A. Cattolico, J. Biosci. Bioeng., 109, 198 (2010).CrossRefGoogle Scholar
  32. 32.
    R. Sager and S. Granick, J. Gen. Physiol., 37, 729 (1954).CrossRefGoogle Scholar
  33. 33.
    R. Singh, S. Kaushik, Y. Wang, Y. Xiang, I. Novak, M. Komatsu, K. Tanaka, A. M. Cuervo and M. J. Czaja, Nature, 458, 1131 (2009).CrossRefGoogle Scholar
  34. 34.
    K. K. Sharma, H. Schuhmann and P.M. Schenk, Energies, 5, 1532 (2012).CrossRefGoogle Scholar
  35. 35.
    Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert and A. Darzins, Plant J., 54, 621 (2008).CrossRefGoogle Scholar
  36. 36.
    P. I. Leonardi, C. A. Popovich and M. C. Damiani, Econ. Eff. Biofuels. Prod. (2011).Google Scholar
  37. 37.
    A. Converti, A. A. Casazza, E.Y. Ortiz, P. Perego and M. Del Borghi, Chem. Eng. Process., 48, 1146 (2009).CrossRefGoogle Scholar
  38. 38.
    G. O. James, C. H. Hocart, W. Hillier, H. Chen, F. Kordbacheh, G. D. Price and M. A. Djordjevic, Bioresour. Technol., 102, 3343 (2011).CrossRefGoogle Scholar
  39. 39.
    W. Majeran, J. Olive, D. Drapier, O. Vallon and F.-A. Wollman, Plant Physiol., 126, 421 (2001).CrossRefGoogle Scholar
  40. 40.
    K. S. Ishimoto and S. Lory, J. Bacteriol., 174, 3514 (1992).Google Scholar
  41. 41.
    I.M. Ota and S. Lory, Science, 262, 566 (1993).CrossRefGoogle Scholar
  42. 42.
    C. Chang, S. F. Kwok, A. B. Bleecker and E.M. Meyerowitz, Science, 262, 539 (1993).CrossRefGoogle Scholar
  43. 43.
    G. E. Schaller, S.-H. Shiu and J. P. Armitage, Curr. Biol., 21, R320 (2011).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2014

Authors and Affiliations

  • Bongsoo Lee
    • 1
  • Gang-Guk Choi
    • 1
  • Yoon-E. Choi
    • 2
  • Minji Sung
    • 1
  • Min S. Park
    • 1
    • 3
  • Ji-Won Yang
    • 1
    • 3
  1. 1.Department of Chemical and Biomolecular EngineeringKAISTDaejeonKorea
  2. 2.LED Agri-bio Fusion Technology Research CenterChonbuk National UniversityJeollabuk-doKorea
  3. 3.Advanced Biomass R&D CenterKAISTDaejeonKorea

Personalised recommendations