Advertisement

Korean Journal of Chemical Engineering

, Volume 31, Issue 5, pp 812–820 | Cite as

Enhanced Zn(II) uptake using zinc imprinted form of novel nanobiosorbent and its application as an antimicrobial agent

  • Geetanjali Basak
  • Devlina Das
  • Nilanjana Das
Environmental Engineering

Abstract

We investigated the use of zinc imprinted of novel nanobiosorbent prepared from Candida rugosa to remove Zn(II) from aqueous solution. The nanobiosorbent was characterized by SEM, FTIR and XRD. Effects of various parameters including pH of the solution, adsorbent dosage, initial Zn(II) ion concentration and contact time on Zn(II) removal by the nanobiosorbents were investigated through batch process. Equilibrium data for Zn(II) removal was fitted to Langmuir isotherm model with an enhanced adsorption capacity of 275.48mg/g for zinc imprinted C. rugosa nanobiosorbent, compared to nonimprinted nanobiosorbent of 172.41 mg/g. Pseudo-second-order kinetic model was best fitted to predict the sorption kinetics for both the nanobiosorbents. AFM study revealed monolayer adsorption with thin film diffusion for Zn(II) removal. The antimicrobial activity of zinc imprinted nanobiosorbent was investigated against pathogenic yeasts viz. Candida albicans and Cryptococcus neoformans using agar well diffusion method.

Keywords

Adsorption Isotherm Models Candida rugosa Nanobiosorbent Non Imprinted Zinc Imprinted 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. S. Wang, H. J. Lu, F. Liu and J. J. Ren, Adsorpt. Sci. Technol., 26, 407 (2011).Google Scholar
  2. 2.
    L. Giraldo, A. Erto and J. C. Moreno-Pirajañ, Adsorption, 19, 465 (2013).CrossRefGoogle Scholar
  3. 3.
    T. Basu and U. C. Ghosh, Desalination, 266, 25 (2011).CrossRefGoogle Scholar
  4. 4.
    N. N. Nassar, A. Hassan and P. Pereira-Almao, Energy Fuels, 25, 1566 (2011).CrossRefGoogle Scholar
  5. 5.
    N. N. Nassar, A. Hassan and P. Pereira-Almao, Energy Fuels, 25, 1017 (2011).CrossRefGoogle Scholar
  6. 6.
    R. Rakhshaee, J. Hazard. Mater., 197, 144 (2011).CrossRefGoogle Scholar
  7. 7.
    L. Ma, Y. Peng, B.W. D. Lei and H. Xu, Chem. Eng. J., 225, 59 (2013).CrossRefGoogle Scholar
  8. 8.
    D. Charumathi and N. Das, Int. J. Eng. Sci. Technol., 2, 4325 (2010).Google Scholar
  9. 9.
    R. Say, M. Erdem, A. Ersoz, H. Turk and A. Denizli, Appl. Catal. A., 286, 221 (2005).CrossRefGoogle Scholar
  10. 10.
    T. P. Rao, R. Kala and S. Daniel, Anal. Chim. Acta, 578, 105 (2006).CrossRefGoogle Scholar
  11. 11.
    Z. C. Li, H. T. Fan, Y. Zhang, M.X. Chen, Z.Y. Yu, X. Q. Cao and T. Sun, Chem. Eng. J., 171, 703 (2011).CrossRefGoogle Scholar
  12. 12.
    S. Huijia, Z. Ying, L. Jia and T. Tianwei, Process Biochem., 41, 1422 (2006).CrossRefGoogle Scholar
  13. 13.
    The Council of the European Communities, Directive 76/464/EEC on pollution caused by certain dangerous substances discharged into the aquatic environment of the community, Off. J. Eur. Commun. (1976) No. L 129/23.Google Scholar
  14. 14.
    D. R. Petrell, B. Ansari, P. Doig, J. Lam, H. Wong and L. Xu, Aquat. Des. Rehabil., 1, 75 (2002).Google Scholar
  15. 15.
    G. Basak, D. Charumathi and N. Das, Int. J. Eng. Sci. Technol., 3, 6321 (2011).Google Scholar
  16. 16.
    I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).CrossRefGoogle Scholar
  17. 17.
    H.M. F. Freundlich, J. Phys. Chem., 57, 385 (1906).Google Scholar
  18. 18.
    T. Fan, Y. Liu, B. Feng, G. Zeng, C. Yang, M. Zhou, H. Zhou, Z. Tan and X. Wang. J. Hazard. Mater., 160, 655 (2008).CrossRefGoogle Scholar
  19. 19.
    S. Lagergren, K. Sven. Vetenskapsakad. Handl., 24, 1 (1898).Google Scholar
  20. 20.
    Y. S. Ho and G. McKay, Chem. Eng. J., 70, 115 (1978).CrossRefGoogle Scholar
  21. 21.
    D. Das, G. Basak, Lakshmi. V and N. Das, Biochem. Eng. J., 64, 30 (2012).CrossRefGoogle Scholar
  22. 22.
    V. K. Gupta, M. Gupta and S. Sharma, Water Res., 35, 1125 (2001).CrossRefGoogle Scholar
  23. 23.
    A. J. Kora, R. Manjusha and J. Arunachalam, Mater. Sci. Eng. C., 29, 2104 (2009).CrossRefGoogle Scholar
  24. 24.
    L. Jin and R. Bai, Langmuir, 18, 9765 (2002).CrossRefGoogle Scholar
  25. 25.
    B. D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley, Reading, MA, USA, 3rd Ed. (1967).Google Scholar
  26. 26.
    B. Volesky, Hydrometallurgy, 59, 203 (2001).CrossRefGoogle Scholar
  27. 27.
    K. Fytianos, E. Voudrias and E. Kokkalis, Chemosphere, 40, 3 (2000).CrossRefGoogle Scholar
  28. 28.
    I. Tan, A. L. Ahmad and B. Hameed, J. Hazard. Mater., 154, 337 (2008).CrossRefGoogle Scholar
  29. 29.
    M.M. Dubinin, Chem. Rev., 60, 235 (1960).CrossRefGoogle Scholar
  30. 30.
    S.M. Hasany and M.H. Chaudhary, Appl. Rad. Isot., 47, 467 (1996).CrossRefGoogle Scholar
  31. 31.
    Y. S. Ho and A. E. Ofomaja, Biochem. Eng., 30, 117 (2006).CrossRefGoogle Scholar
  32. 32.
    A. Kumar, S. Kumar and D.V. Gupta, J. Hazard. Mater., 147, 155 (2007).CrossRefGoogle Scholar
  33. 33.
    G. E. Boyd, A.W. Adamson and L. S. Myers, J. Am. Chem. Soc., 69, 2836 (1947).CrossRefGoogle Scholar
  34. 34.
    D. Mohan and K. P. Singh, Water Res., 36, 2304 (2006).CrossRefGoogle Scholar
  35. 35.
    A. M. E. I.-Kamash, A. A. Zaki and M. Abed E.I. Geleel, J. Hazard. Mater., 127, 211 (2005).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2014

Authors and Affiliations

  1. 1.School of Bio Sciences and Technology, Environmental Biotechnology DivisionVIT UniversityVelloreIndia

Personalised recommendations