Korean Journal of Chemical Engineering

, Volume 30, Issue 12, pp 2127–2141 | Cite as

Characterization of crystalline cellulose in biomass: Basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG

  • Seong H. Kim
  • Christopher M. Lee
  • Kabindra Kafle
Review Paper

Abstract

Cellulose is among the most important and abundant biopolymers in biosphere. It is the main structural component of a vast number of plants that carries vital functions for plant growth. Cellulose-based materials have been used in a variety of human activities ranging from papers and fabrics to engineering applications including production of biofuels. However, our understanding of the cellulose structure in its native form is quite limited because the current experimental methods often require separation or purification processes and provide only partial information of the cellulose structure. This paper aims at providing a brief background of the cellulose structure and reviewing the basic principles, capabilities and limitations of the cellulose characterization methods that are widely used by engineers dealing with biomass. The analytical techniques covered in this paper include x-ray diffraction, nuclear magnetic resonance, and vibrational spectroscopy (infrared, Raman, and sum-frequency-generation). The scope of the paper is restricted to the application of these techniques to the structural analysis of cellulose.

Key words

Cellulose Biomass XRD NMR IR Raman SFG 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. H. Atalla and A. Isogai, Celluloses in comprehensive natural products ii: Chemistry and biology, Elsevier Science (2010).Google Scholar
  2. 2.
    Y. Yu and H. Wu, Ind. Eng. Chem. Res., 48, 10682 (2009).Google Scholar
  3. 3.
    M. Gray, A. Converse and C. Wyman, “Sugar monomer and oligomer solubility,” Appl. Biochem. Biotechnol., B. Davison, J. Lee, M. Finkelstein and J. McMillan, Eds., Humana Press, 179 (2003).Google Scholar
  4. 4.
    A. C. O’Sullivan, Cellulose, 4, 173 (1997).Google Scholar
  5. 5.
    C. Somerville, Annu. Rev. Cell Dev. Biol., 22, 53 (2006).Google Scholar
  6. 6.
    A. N. Fernandes, L.H. Thomas, C.M., Altaner, P. Callow, V. T. Forsyth, D.C. Apperley, C. J. Kennedy and M. C. Jarvis, PNAS, 108, E1195 (2011).Google Scholar
  7. 7.
    S.Y. Ding and M. E. Himmel, J. Agric. Food Chem., 54, 597 (2006).Google Scholar
  8. 8.
    Y. Nishiyama, J. Wood Sci., 55, 241 (2009).Google Scholar
  9. 9.
    P. Sarkar, E. Bosneaga and M. Auer, J. Exp. Bot., 60, 3615 (2009).Google Scholar
  10. 10.
    C. T. Brett, Int. Rev. Cytol., 199, 161 (2000).Google Scholar
  11. 11.
    I.M. Saxena and R.M. Brown, Ann. Bot., 96, 9 (2005).Google Scholar
  12. 12.
    M. E. Himmel, S.Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J.W. Brady and T. D. Foust, Science, 315, 804 (2007).Google Scholar
  13. 13.
    W. Zhao and A. Berg, Lab on a Chip, 2008, 1988 (2008).Google Scholar
  14. 14.
    S. Pérez and D. Samain, Advances in Carbohydrate Chemistry and Biochemistry, 64, 25 (2010).Google Scholar
  15. 15.
    S. Park, D. K. Johnson, C. I. Ishizawa, P. A. Parilla and M. F. Davis, Cellulose, 16, 641 (2009).Google Scholar
  16. 16.
    C. Somerville, H. Youngs, C. Taylor, S. C. Davis and S. P. Long, Science, 329, 790 (2010).Google Scholar
  17. 17.
    A. Carroll and C. Somerville, Ann. Rev. Plant Biol., 60, 165 (2009).Google Scholar
  18. 18.
    R. Atalla and D. VanderHart, Solid State Nucl. Magn. Reson., 15, 1 (1999).Google Scholar
  19. 19.
    W. L. Earl and D. L. VanderHart, Macromolecules, 14, 570 (1981).Google Scholar
  20. 20.
    F. Horii, A. Hirai and R. Kitamaru, Polym. Bull., 10, 357 (1983).Google Scholar
  21. 21.
    Y. Nishiyama, P. Langan and H. Chanzy, J. Am. Chem. Soc., 124, 9074 (2002).Google Scholar
  22. 22.
    Y. Nishiyama, J. Sugiyama, H. Chanzy and P. Langan, J. Am. Chem. Soc., 125, 14300 (2003).Google Scholar
  23. 23.
    H. Marrinan and J. Mann, J. Polym. Sci., 21, 301 (1956).Google Scholar
  24. 24.
    J. Sugiyama, J. Persson and H. Chanzy, Macromolecules, 24, 2461 (1991).Google Scholar
  25. 25.
    J. Mann and H. Marrinan, J. Polym. Sci., 27, 595 (1958).Google Scholar
  26. 26.
    A. L. Barnette, L.C. Bradley, B.D. Veres, E. P. Schreiner, Y.B. Park, J. Park, S. Park and S. H. Kim, Biomacromolecules, 12, 2434 (2011).Google Scholar
  27. 27.
    A. L. Barnette, C. Lee, L. C. Bradley, E. P. Schreiner, Y. B. Park, H. Shin, D. J. Cosgrove, S. Park and S. H. Kim, Carbohydr. Polym., 89, 802 (2012).Google Scholar
  28. 28.
    C.M. Lee, A. Mittal, A. L. Barnette, K. Kafle, Y. B. Park, H. Shin, D. K. Johnson, S. Park and S. H. Kim, Cellulose, 20, 991 (2013).Google Scholar
  29. 29.
    C.M. Lee, N. M.A. Mohamed, H.D. Watts, J.D. Kubicki and S. H. Kim, J. Phys. Chem. B, 117, 6681 (2013).Google Scholar
  30. 30.
    P. Zugenmaier, Crystalline cellulose and cellulose derivatives: Characterization and structures, Springer (2008).Google Scholar
  31. 31.
    Y. Habibi, L.A. Lucia and O. J. Rojas, Chem. Rev., 110, 3479 (2010).Google Scholar
  32. 32.
    S. K. Cousins and R.M. Brown Jr., Polymer, 36, 3885 (1995).Google Scholar
  33. 33.
    P. Hermans and D. Vermaas, J. Polym. Sci., 1, 149 (1946).Google Scholar
  34. 34.
    R. P. Swatloski, S. K. Spear, J. D. Holbrey and R. D. Rogers, J. Am. Chem. Soc., 124, 4974 (2002).Google Scholar
  35. 35.
    M. Zavrel, D. Bross, M. Funke, J. Büchs and A. C. Spiess, Bioresour. Technol., 100, 2580 (2009).Google Scholar
  36. 36.
    P. Conte, A. Maccotta, C. De Pasquale, S. Bubici and G. Alonzo, J. Agric. Food Chem., 57, 8748 (2009).Google Scholar
  37. 37.
    A. Isogai and R. H. Atalla, Cellulose, 5, 309 (1998).Google Scholar
  38. 38.
    Y. Wang and Y. Deng, Biotechnol. Bioeng., 102, 1398 (2009).Google Scholar
  39. 39.
    W. Blaschek, H. Koehler, U. Semler and G. Franz, Planta, 154, 550 (1982).Google Scholar
  40. 40.
    R. J. Viëtor, R. H. Newman, M. A. Ha, D. C. Apperley and M. C. Jarvis, Plant J., 30, 721 (2002).Google Scholar
  41. 41.
    R. H. Newman and J. A. Hemmingson, Cellulose, 2, 95 (1995).Google Scholar
  42. 42.
    J. F. Matthews, M. Bergenstrahle, G. T. Beckham, M. E. Himmel, M. R. Nimlos, J.W. Brady and M. F. Crowley, J. Phys. Chem. B, 115, 2155 (2011).Google Scholar
  43. 43.
    J. Hearle, J. Appl. Polymer Sci., 7, 1175 (1963).Google Scholar
  44. 44.
    A. Scallan, Text. Res. J., 41, 647 (1971).Google Scholar
  45. 45.
    R. H. Atalla and D. L. Vanderhart, Science, 223, 283 (1984).Google Scholar
  46. 46.
    H. Yamamoto and F. Horii, Macromolecules, 26, 1313 (1993).Google Scholar
  47. 47.
    P. Langan, Y. Nishiyama and H. Chanzy, Biomacromolecules, 2, 410 (2001).Google Scholar
  48. 48.
    D. Ruan, L. Zhang, J. Zhou, H. Jin and H. Chen, Macromol. Biosci., 4, 1105 (2004).Google Scholar
  49. 49.
    R. Hori and M. Wada, Cellulose, 13, 281 (2006).Google Scholar
  50. 50.
    M. Wada, L. Heux, A. Isogai, Y. Nishiyama, H. Chanzy and J. Sugiyama, Macromolecules, 34, 1237 (2001).Google Scholar
  51. 51.
    M. Wada, H. Chanzy, Y. Nishiyama and P. Langan, Macromolecules, 37, 8548 (2004).Google Scholar
  52. 52.
    M. Wada, L. Heux and J. Sugiyama, Biomacromolecules, 5, 1385 (2004).Google Scholar
  53. 53.
    E. S. Gardiner and A. Sarko, Can. J. Chem., 63, 173 (1985).Google Scholar
  54. 54.
    H. Chanzy, K. Imada and R. Vuong, Protoplasma, 94, 299 (1978).Google Scholar
  55. 55.
    F. Horii, A. Hirai and R. Kitamaru, Polym. Bull., 10, 357 (1983).Google Scholar
  56. 56.
    P. Langan, Y. Nishiyama and H. Chanzy, J. Am. Chem. Soc., 121, 9940 (1999).Google Scholar
  57. 57.
    G. Rappenecker and P. Zugenmaier, Carbohydr. Res., 89, 11 (1981).Google Scholar
  58. 58.
    Y. Waseda, Xray diffraction crystallography, Springer Verlag Berlin Heidelberg (2011).Google Scholar
  59. 59.
    G. Honjo and M. Watanabe, Nature, 181, 326 (1958).Google Scholar
  60. 60.
    J. Sugiyama, R. Vuong and H. Chanzy, Macromolecules, 24, 4168 (1991).Google Scholar
  61. 61.
    L. Segal, J. Creely, A. Martin and C. Conrad, Text. Res. J., 29, 786 (1959).Google Scholar
  62. 62.
    Y. Nishiyama, S. Kuga, M. Wada and T. Okano, Macromolecules, 30, 6395 (1997).Google Scholar
  63. 63.
    R. Jenkins and R. Snyder, Introduction to x-ray powder diffractometry, Wiley-Interscience (1996).Google Scholar
  64. 64.
    R. Chandrasekaran, Adv. Carbohydr. Chem. Biochem., 52, 311 (1997).Google Scholar
  65. 65.
    S. Chu and G. Jeffrey, Acta Crystallogr., B24, 830 (1968).Google Scholar
  66. 66.
    J. T. Ham and D.G. Williams, Acta Crystallogr., B26, 1373 (1970).Google Scholar
  67. 67.
    K. H. Gardner and J. Blackwell, Biopolymers, 13, 1975 (1974).Google Scholar
  68. 68.
    A. T. Briinger, Nature, 355, 472 (1992).Google Scholar
  69. 69.
    K. Gessler, N. Krauss, T. Steiner, C. Betzel, A. Sarko and W. Saenger, J. Am. Chem. Soc., 117, 11397 (1995).Google Scholar
  70. 70.
    D. Picot, P. J. Loll and R.M. Garavito, Nature, 367, 243 (1994).Google Scholar
  71. 71.
    K. Meyer and L. Misch, Helu Chim. Acta, 20, 232 (1937).Google Scholar
  72. 72.
    A. D. French, Cellulose, In press (2013).Google Scholar
  73. 73.
    N.-H. Kim, T. Imai, M. Wada and J. Sugiyama, Biomacromolecules, 7, 274 (2006).Google Scholar
  74. 74.
    A. Patterson, Phys. Rev., 56, 978 (1939).Google Scholar
  75. 75.
    R. P. Oliveira and C. Driemeier, J. Appl. Crystallogr., 46, 1196 (2013).Google Scholar
  76. 76.
    C. Driemeier and J. Bragatto, J. Phys. Chem. B, 117, 415421 (2012).Google Scholar
  77. 77.
    S. Park, J. O. Baker, M.E. Himmel, P.A. Parilla and D.K. Johnson, Biotechnol. Biofuels, 3, 1 (2010).Google Scholar
  78. 78.
    C. Driemeier and G. A. Calligaris, J. Appl. Crystallogr., 44, 184 (2010).Google Scholar
  79. 79.
    R. Drago, Physical methods in chemistry, W.B. Saunders Company, Philadelphia (1977).Google Scholar
  80. 80.
    A.E. Derome, Modern nmr techniques for chemistry research, Pergamon Books Inc., New York (1987).Google Scholar
  81. 81.
    R. Pohmann, “Physical basics of nmr,” In vivo nmr imaging, Schröder, L. and Faber, C., Eds., Humana Press, 3 (2011).Google Scholar
  82. 82.
    M. J. Duer, Solid state nmr spectroscopy: Principles and applications, Wiley-Blackwell (2008).Google Scholar
  83. 83.
    D. C. Apperley, Solid state nmr: Basic principles & practice, Momentum Press, New York (2012).Google Scholar
  84. 84.
    D. D. Laws, H.-M. L. Bitter and A. Jerschow, Angew. Chem. Int. Ed., 41, 3096 (2002).Google Scholar
  85. 85.
    R. Pettifer, C. Brouder, M. Benfatto, C. Natoli, C. Hermes and M.R. Lopez, Physical Review B, 42, 37 (1990).Google Scholar
  86. 86.
    J.W. Hennel and J. Klinowski, “Magic-angle spinning: A historical perspective,” New techniques in solid-state nmr, Springer, 1 (2005).Google Scholar
  87. 87.
    E.R. Andrew, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 299, 505 (1981).Google Scholar
  88. 88.
    H. Kono, S. Yunoki, T. Shikano, M. Fujiwara, T. Erata and M. Takai, J. Am. Chem. Soc., 124, 7506 (2002).Google Scholar
  89. 89.
    J. D. Kubicki, M.N.-A. Mohamed and H. D. Watts, Cellulose, 20, 9 (2013).Google Scholar
  90. 90.
    P. T. Larsson, K. Wickholm and T. Iversen, Carbohydr. Res., 302, 19 (1997).Google Scholar
  91. 91.
    K. Wickholm, P. T. Larsson and T. Iversen, Carbohydr. Res., 312, 123 (1998).Google Scholar
  92. 92.
    R. H. Newman, Holzforschung, 58, 91 (2004).Google Scholar
  93. 93.
    R. H. Newman, Solid State Nucl. Magn. Reson., 15, 21 (1999).Google Scholar
  94. 94.
    H. Yamamoto and F. Horii, Macromolecules, 26, 1313 (1993).Google Scholar
  95. 95.
    R. H. Newman and T. C. Davidson, Cellulose, 11, 23 (2004).Google Scholar
  96. 96.
    C. N. Banwell, Fundamentals of molecular spectroscopy: 4e, Tata McGraw-Hill Education (1994).Google Scholar
  97. 97.
    B. H. Stuart, Infrared spectroscopy: Fundamentals and applications, Wiley (2004).Google Scholar
  98. 98.
    J. H. Wiley and R. H. Atalla, Carbohydr. Res., 160, 113 (1987).Google Scholar
  99. 99.
    T. Imai and J. Sugiyama, Macromolecules, 31, 6275 (1998).Google Scholar
  100. 100.
    M. Jarvis, Nature, 426, 611 (2003).Google Scholar
  101. 101.
    R. H. Atalla, IPC Technical Paper Series, 19, 1 (1975).Google Scholar
  102. 102.
    U. Agarwal, R. Reiner and S. Ralph, Cellulose, 17, 721 (2010).Google Scholar
  103. 103.
    K. Schenzel, S. Fischer and E. Brendler, Cellulose, 12, 223 (2005).Google Scholar
  104. 104.
    M. Åkerholm, B. Hinterstoisser and L. Salmén, Carbohydr. Res., 339, 569 (2004).Google Scholar
  105. 105.
    M. L. Nelson and R. T. O’Connor, J. Appl. Polym. Sci., 8, 1325 (1964).Google Scholar
  106. 106.
    R. Jeffries, Polymer, 4, 375 (1963).Google Scholar
  107. 107.
    Y. Hishikawa, E. Togawa, Y. Kataoka and T. Kondo, Polymer, 40, 7117 (1999).Google Scholar
  108. 108.
    R. Jeffries, J. Appl. Polym. Sci., 8, 1213 (1964).Google Scholar
  109. 109.
    K. Hofstetter, B. Hinterstoisser and L. Salmén, Cellulose, 13, 131 (2006).Google Scholar
  110. 110.
    Y. Horikawa and J. Sugiyama, Cellulose, 15, 419 (2008).Google Scholar
  111. 111.
    A.G. Lambert, P.B. Davies and D. J. Neivandt, Appl. Spectrosc. Rev., 40, 103 (2005).Google Scholar
  112. 112.
    Y. Shen, Nature, 337, 519 (1989).Google Scholar
  113. 113.
    H.-F. Wang, W. Gan, R. Lu, Y. Rao and B.-H. Wu, Int. Rev. Phys. Chem., 24, 191 (2005).Google Scholar
  114. 114.
    S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar and V. Gopalan, J. Am. Ceram. Soc., 94, 2699 (2011).Google Scholar
  115. 115.
    H.C. Hieu, N. A. Tuan, H. Li, Y. Miyauchi and G. Mizutani, Appl. Spectrosc., 65, 1254 (2011).Google Scholar
  116. 116.
    R. LaComb, O. Nadiarnykh, S. S. Townsend and P. J. Campagnola, Opt. Commun., 281, 1823 (2008).Google Scholar
  117. 117.
    L. Tian, J. Qu, Z. Guo, Y. Jin, Y. Meng and X. Deng, J. Appl. Phys., 108, 054701 (2010).Google Scholar
  118. 118.
    F. Vidal and A. Tadjeddine, Rep. Prog. Phys., 68, 1095 (2005).Google Scholar
  119. 119.
    C. T. Williams and D. A. Beattie, Surf. Sci., 500, 545 (2002).Google Scholar
  120. 120.
    G. L. Richmond, Chem. Rev., 102, 2693 (2002).Google Scholar
  121. 121.
    A. Šturcová, I. His, T. J. Wess, G. Cameron and M.C. Jarvis, Biomacromolecules, 4, 1589 (2003).Google Scholar
  122. 122.
    A. D. French and G. P. Johnson, Cellulose, 16, 959 (2009).Google Scholar
  123. 123.
    A. Neville, BioEssays, 3, 4 (1985).Google Scholar
  124. 124.
    U. Kutschera, Ann. Bot., 101, 615 (2008).Google Scholar
  125. 125.
    W. Wang, X. Chen, B. S. Donohoe, P. N. Ciesielski, A. Mittal, R. Katahira, E. M. Kuhn, K. Kafle, C.M. Lee, S. Park, S. H. Kim, M. P. Tucker, M. E. Himmel and D. K. Johnson, Submitted to Biomass and Bioenergy (2013).Google Scholar
  126. 126.
    Y.B. Park, C.M. Lee, T. Zhang, B.-W. Koo, S. Park, D. J. Cosgrove and S. H. Kim, Plant Physiol. (http://www.plantphysiol.org/content/early/2013/08/30/pp.113.225235.abstract, Published online before print August 2013, doi:http://dx.doi.org/10.1104/pp.113.225235 Plant Physiology August 2013 pp.225235 (2013).Google Scholar
  127. 127.
    A. P. Heiner, J. Sugiyama and O. Teleman, Carbohydr. Res., 273, 207 (1995).Google Scholar
  128. 128.
    K. Mazeau and L. Heux, J. Phys. Chem. B, 107, 2394 (2003).Google Scholar
  129. 129.
    J. F. Matthews, C. E. Skopec, P. E. Mason, P. Zuccato, R.W. Torget, J. Sugiyama, M. E. Himmel and J.W. Brady, Carbohydr. Res., 341, 138 (2006).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2013

Authors and Affiliations

  • Seong H. Kim
    • 1
  • Christopher M. Lee
    • 1
  • Kabindra Kafle
    • 1
  1. 1.Department of Chemical Engineering and Materials Research InstitutePennsylvania State UniversityUniversity ParkUSA

Personalised recommendations