Advertisement

Korean Journal of Chemical Engineering

, Volume 30, Issue 9, pp 1667–1680 | Cite as

Synthesis of metal-organic frameworks: A mini review

  • Yu-Ri Lee
  • Jun Kim
  • Wha-Seung AhnEmail author
Review Paper

Abstract

Metal organic frameworks (MOFs) are porous crystalline materials of one-, two-, or three-dimensional networks constructed from metal ions/clusters and multidentate organic linkers via coordination bonding, which are emerging as an important group of materials for energy storage, CO2 adsorption, alkane/alkene separation, and catalysis. To introduce newcomers in chemical engineering discipline to the rapidly expanding MOF research works, this review presents a brief introduction to the currently available MOFs synthesis methods. Starting from the conventional solvothermal/hydrothermal synthesis, microwave-assisted, sonochemical, electrochemical, mechanochemical, ionothermal, drygel conversion, and microfluidic synthesis methods will be presented. Examples will be limited to those representative MOF structures that can be synthesized using common organic ligands of 1,4-benzenedicarboxylic acid (and its functionalized forms) and 1,3,5-benzenetricarboxylic acid, in conjunction with metal nodes of Zn2+, Cu2+, Cr3+, Al3+, Fe3+ and Zr4+. Synthesis of widely-investigated zeolitic imidazolate framework (ZIF) structure, ZIF-8 is also included.

Key words

Metal Organic Frameworks (MOFs) Zeolitic Imidazolate Frameworks (ZIFs) Solvothermal/Hydrothermal Synthesis Microwave Sonochemistry Electrochemical Synthesis Mechanochemical Synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Long and O.M. Yaghi, Chem. Soc. Rev., 38, 1213 (2009).CrossRefGoogle Scholar
  2. 2.
    M. Eddaoudi, D. B. Moler and H. Li, Acc. Chem. Res., 34, 319 (2001).CrossRefGoogle Scholar
  3. 3.
    D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O’Keeffe and O.M. Yaghi, Chem. Soc. Rev., 38, 1257 (2009).CrossRefGoogle Scholar
  4. 4.
    J.R. Li, R. J. Kuppler and H. C. Zhou, Chem. Soc. Rev., 38, 1477 (2009).CrossRefGoogle Scholar
  5. 5.
    A. U. Czaja, N. Trukhan and U. Müller, Chem. Soc. Rev., 38, 1284 (2009).CrossRefGoogle Scholar
  6. 6.
    R. E. Morris and P. S. Wheatley, Angew. Chem. Int. Ed., 47, 4966 (2008).CrossRefGoogle Scholar
  7. 7.
    Y. H. Hu and L. Zhang, Adv. Mater., 22, E117 (2010).CrossRefGoogle Scholar
  8. 8.
    D. Zhao, D.Q. Yuan, D. F. Sun and H. C. Zhou, J. Am. Chem. Soc., 131, 9186 (2009).CrossRefGoogle Scholar
  9. 9.
    D. Yuan, D. Zhao, D. Sun and H. C. Zhou, Angew. Chem., Int. Ed., 49, 5357 (2010).CrossRefGoogle Scholar
  10. 10.
    J. L. C. Rowsell, E.C. Spencer, J. Eckert, J. A.K. Howard and O.M. Yaghi, Science, 309, 1350 (2005).CrossRefGoogle Scholar
  11. 11.
    G. Férey, M. Latroche, C. Serre, F. Millange, T. Loiseau and A. P. Guégan, Chem. Commun., 2976 (2003).Google Scholar
  12. 12.
    R. Kitaura, K. Seki, G. Akiyama and S. Kitagawa, Angew. Chem. Int. Ed., 42, 428 (2003).CrossRefGoogle Scholar
  13. 13.
    D. A. Yang, H.Y. Cho, J. Kim, S. T. Yang and W. S. Ahn, Energy Environ. Sci., 5, 6465 (2012).CrossRefGoogle Scholar
  14. 14.
    E. Haque, J. E. Lee, I. T. Jang, Y. K. Hwang, J. S. Chang, J. Jegal and S. H. Jhung, J. Hazard. Mater., 181, 535 (2010).CrossRefGoogle Scholar
  15. 15.
    E. Haque, J.W. Jun and S. H. Jhung, J. Hazard. Mater., 185, 507 (2011).CrossRefGoogle Scholar
  16. 16.
    S. H. Jhung, J. H. Lee, J.W. Yoon, C. Serre, G. Férey and J. S. Chang, Adv. Mater., 19, 121 (2007).CrossRefGoogle Scholar
  17. 17.
    S. Bhattacharjee, D. A. Yang and W. S. Ahn, Chem. Commun., 47, 3637 (2011).CrossRefGoogle Scholar
  18. 18.
    J. Kim, S. N. Kim, H.G. Jang, G. Seo and W. S. Ahn, Appl. Catal. A: Gen., 453, 175 (2013).CrossRefGoogle Scholar
  19. 19.
    J.Y. Lee, O. K. Farha, J. Roberts, K.A. Scheidt, S. T. Nguyen and J. T. Hupp, Chem. Soc. Rev., 38, 1450 (2009).CrossRefGoogle Scholar
  20. 20.
    S. Achmann, G. Hagen, J. Kita, I.M. Malkowsky, C. Kiener and R. Moos, Sensors, 9, 1574 (2009).CrossRefGoogle Scholar
  21. 21.
    S. M. Humphrey and P. T. Wood, J. Am. Chem. Soc., 126, 13236 (2004).CrossRefGoogle Scholar
  22. 22.
    P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur and R. Gref, Nat. Mater., 9, 172 (2010).CrossRefGoogle Scholar
  23. 23.
    N. A. Khan, Md. M. Haque and S. H. Jhung, Eur. J. Inorg. Chem., 4975 (2010).Google Scholar
  24. 24.
    J. Rocha, L. D. Carlos, F.A. A. Paz and D. Ananias, Chem. Soc. Rev., 40, 926 (2011).CrossRefGoogle Scholar
  25. 25.
    S. H. Jhung, N. A. Khan and Z. Hasan, CrystEngComm., 14, 7099 (2012).CrossRefGoogle Scholar
  26. 26.
    N. Stock and S. Biswas, Chem. Rev., 112, 933 (2012).CrossRefGoogle Scholar
  27. 27.
    J. S. Choi, W. J. Son, J. Kim and W. S. Ahn, Micropor. Mesopor. Mater., 116, 727 (2008).CrossRefGoogle Scholar
  28. 28.
    H.Y. Cho, D. A. Yang, J. Kim, S.Y. Jeong and W. S. Ahn, Catal. Today, 185, 35 (2012).CrossRefGoogle Scholar
  29. 29.
    W. J. Son, J. Kim, J. Kim and W. S. Ahn, Chem. Commun., 6336 (2008).Google Scholar
  30. 30.
    D.W. Jung, D. A. Yang, J. Kim, J. Kim and W. S. Ahn, Dalton Trans., 39, 2883 (2010).CrossRefGoogle Scholar
  31. 31.
    J. Kim, S.T. Yang, S.B. Choi, J. Sim, J. Kim and W. S. Ahn, J. Mater. Chem., 21, 3070 (2011).CrossRefGoogle Scholar
  32. 32.
    U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt and J. Pastre, J. Mater. Chem., 16, 626 (2006).CrossRefGoogle Scholar
  33. 33.
    M. Hartmann, S. Kunz, D. Himsl, O. Tangermann, S. Ernst and A. Wagener, Langmuir, 24, 8634 (2008).CrossRefGoogle Scholar
  34. 34.
    T. Friščić, D.G. Reid, I. Halasz, R. S. Stein, R. E. Dinnebier and M. J. Duer, Angew. Chem. Int. Ed., 49, 712 (2010).CrossRefGoogle Scholar
  35. 35.
    M. Klimakow, P. Klobes, A. F. Thüunemann, K. Rademann and F. Emmerling, Chem. Mater., 22, 5216 (2010).CrossRefGoogle Scholar
  36. 36.
    J. Kim, S. H. Kim, S. T. Yang and W. S. Ahn, Micropor. Mesopor. Mater., 161, 48 (2012).CrossRefGoogle Scholar
  37. 37.
    H.Y. Cho, J. Kim, S. N. Kim and W. S. Ahn, Micropor. Mesopor. Mater., 169, 180 (2013).CrossRefGoogle Scholar
  38. 38.
    H. Li, M. Eddaoudi, M. O’Keeffe and O.M. Yaghi, Nature, 402, 276 (1999).CrossRefGoogle Scholar
  39. 39.
    A. R. Millward and O.M. Yaghi, J. Am. Chem. Soc., 127, 17998 (2005).CrossRefGoogle Scholar
  40. 40.
    N.T. S. Phan, K. K. A. Le and T. D. Phan, Appl. Catal. A: Gen., 382, 246 (2010).CrossRefGoogle Scholar
  41. 41.
    S. S.-Y. Chui, S.M.-F. Lo, J. P. H. Charmant, A.G. Orpen and I. D. Williams, Science, 283, 1148 (1999).CrossRefGoogle Scholar
  42. 42.
    G. Férey, C. M. Drazniekes, C. Serre, F. Millange, J. Dutour, S. Surblé and I. Margiolaki, Science, 309, 2040 (2005).CrossRefGoogle Scholar
  43. 43.
    Y. K. Hwang, D.Y. Hong, J. S. Chang, S. H. Jhung, Y. K. Seo, J. Kim, A. Vimony, M. Daturi, C. Serre and G. Férey, Angew. Chem. Int. Ed., 47, 4144 (2008).CrossRefGoogle Scholar
  44. 44.
    J. Kim, S. Bhattacharjee, K. E. Jeong, S.Y. Jeong and W. S. Ahn, Chem. Commun., 3904 (2009).Google Scholar
  45. 45.
    P. Horcajada, C. Serre, M.V. Regí, M. Sebban, F. Taulelle and G. Férey, Angew. Chem. Int. Ed., 45, 5974 (2006).CrossRefGoogle Scholar
  46. 46.
    A. Henschel, K. Gedrich, R. Kraehnertb and S. Kaskel, Chem. Commun., 4192 (2008).Google Scholar
  47. 47.
    J. Gascon, U. Aktay, M. D. Hernandez-Alonso, G. P. M. van Klink and F. Kapteijn, J. Catal., 261, 75 (2009).CrossRefGoogle Scholar
  48. 48.
    D. Britt, H. Furukawa, B. Wang, T.G. Glover and O.M. Yaghi, PNAS, 106, 20637 (2009).CrossRefGoogle Scholar
  49. 49.
    S.R. Caskey, A.G. Wong-Foy and A. J. Matzger, J. Am. Chem. Soc., 130, 10870 (2008).CrossRefGoogle Scholar
  50. 50.
    C. Serre, F. Millange, C. Thouvenot, M. Nogués, G. Marsolier, D. Louër and G. Férey, J. Am. Chem. Soc., 124, 13519 (2002).CrossRefGoogle Scholar
  51. 51.
    S. Couck, J. F.M. Denayer, G.V. Baron, T. Rémy, J. Gascon and F. Kapteijn, J. Am. Chem. Soc., 131, 6326 (2009).CrossRefGoogle Scholar
  52. 52.
    J. Kim, W. Y. Kim and W. S. Ahn, Fuel, 102, 574 (2012).CrossRefGoogle Scholar
  53. 53.
    P. Horcajada, S. Surblé, C. Serre, D.Y. Hong, Y. K. Seo, J. S. Chang, J.M. Grenèche, I. Margiolaki and G. Férey, Chem. Commun., 2820 (2007).Google Scholar
  54. 54.
    M. Kim and S.M. Cohen, CrystEngComm, 14, 4096 (2012).CrossRefGoogle Scholar
  55. 55.
    K. S. Park, Z. Ni, A. P. Côté, J.Y. Choi, R. Huang, F. J. Uribe-Romo, H.K. Chae, M. O’Keeffe and O.M. Yaghi, PNAS, 103, 10186 (2006).CrossRefGoogle Scholar
  56. 56.
    R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe and O. M. Yaghi, Science, 319, 939 (2008).CrossRefGoogle Scholar
  57. 57.
    M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe and O.M. Yaghi, Science, 295, 469 (2002).CrossRefGoogle Scholar
  58. 58.
    H. R. Abid, H. Tian, H. M. Ang, M. O. Tade, C. E. Buckley and S. Wang, Chem. Eng. J., 187, 415 (2012).CrossRefGoogle Scholar
  59. 59.
    K.M. L. Taylor-Pashow, J. D. Rocca, Z. Xie, S. Tran and W. Lin, J. Am. Chem. Soc., 131, 14261 (2009).CrossRefGoogle Scholar
  60. 60.
    Z. Ni and R. I. Masel, J. Am. Chem. Soc., 128, 12394 (2006).CrossRefGoogle Scholar
  61. 61.
    Y. K. Seo, G. Hundal, I. T. Jang, Y. K. Hwang, C.H. Jun and J. S. Chang, Micropor. Mesopor. Mater., 119, 331 (2009).CrossRefGoogle Scholar
  62. 62.
    S. H. Jhung, J. H. Lee and J. S. Chang, Bull. Korean Chem. Soc., 26, 880 (2005).CrossRefGoogle Scholar
  63. 63.
    J. H. Park, S. H. Park and S. H. Jhung, J. Korean Chem. Soc., 53, 553 (2009).CrossRefGoogle Scholar
  64. 64.
    Z. Q. Li, L.G. Qiu, T. Su, Y. Wu, W. Wang, Z.Y. Wu and X. Jiang, Mater. Lett., 63, 78 (2009).CrossRefGoogle Scholar
  65. 65.
    A.M. Joaristi, J. Juan-Alcanþiz, P. Serra-Crespo, F. Kapteijn and J. Gascon, Cryst. Growth Des., 12, 3489 (2012).CrossRefGoogle Scholar
  66. 66.
    A. Pichon and S. L. James, CrystEngComm., 10, 1839 (2008).CrossRefGoogle Scholar
  67. 67.
    P. J. Beldon, L. Fábián, R. S. Stein, A. Thirumurugan, A.K. Cheetham and T. Friščić, Angew. Chem. Int. Ed., 49, 9640 (2010).CrossRefGoogle Scholar
  68. 68.
    N. Stock, Micropor. Mesopor. Mater., 129, 287 (2010).CrossRefGoogle Scholar
  69. 69.
    D. Kim, T. B. Lee, S. B. Choi, J. H. Yoon, J. Kim and S.H. Choi, Chem. Phys. Lett., 420, 256 (2006).CrossRefGoogle Scholar
  70. 70.
    D. J. Tranchemontagne, J. R. Hunt and O.M. Yaghi, Tetrahedron, 64, 8553 (2008).CrossRefGoogle Scholar
  71. 71.
    D.Y. Hong, Y. K. Hwang, C. Serre, G. Férey and J. S. Chang, Adv. Funct. Mater., 19, 1537 (2009).CrossRefGoogle Scholar
  72. 72.
    Y. Pan, B. Yuan, Y. Li and D. He, Chem. Commun., 46, 2280 (2010).CrossRefGoogle Scholar
  73. 73.
    J. Yang, Q. Zhao, J. Li and J. Dong, Micropor. Mesopor. Mater., 130, 174 (2010).CrossRefGoogle Scholar
  74. 74.
    N. A. Khan, I. J. Kang, H.Y. Seok and S. H. Jhung, Chem. Eng. J., 166, 1152 (2011).CrossRefGoogle Scholar
  75. 75.
    T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille and G. Férey, Chem. Eur. J., 10, 1373 (2004).CrossRefGoogle Scholar
  76. 76.
    N. A. Ramsahye, G. Maurin, S. Bourrelly, P. Llewellyn, T. Loiseau and G. Férey, Phys. Chem. Chem. Phys., 9, 1059 (2007).CrossRefGoogle Scholar
  77. 77.
    M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E. A. Quadrelli, F. Bonino and K. P. Lillerud, Chem. Mater., 22, 6632 (2010).CrossRefGoogle Scholar
  78. 78.
    Q.M. Wang, D. Shen, M. Bulow, M. L. Lau, S. Deng, F. R. Fitch, N. O. Lemcoff and J. Semanscin, Micropor. Mesopor. Mater., 55, 217 (2002).CrossRefGoogle Scholar
  79. 79.
    K. Schlichte, T. Kratzke and S. Kaskel, Micropor. Mesopor. Mater., 73, 81 (2004).CrossRefGoogle Scholar
  80. 80.
    T. Mateovic, B. Kriznar, M. Bogataj and A. Mrhar, J. Microencapsulation, 19, 29 (2002).CrossRefGoogle Scholar
  81. 81.
    J. Kim, H. Y. Cho and W. S. Ahn, Catal. Survey Asia, 16, 106 (2012).CrossRefGoogle Scholar
  82. 82.
    Y. Q. Tian, C. X. Cai, Y. Ji, X. Z. You, S.M. Peng and G. H. Lee, Angew. Chem., Int. Ed., 41, 1384 (2002).CrossRefGoogle Scholar
  83. 83.
    R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe and O.M. Yaghi, Science, 319, 939 (2008).CrossRefGoogle Scholar
  84. 84.
    H. Wu, W. Zhou and T. Yildirim, J. Am. Chem. Soc., 129, 5314 (2007).CrossRefGoogle Scholar
  85. 85.
    B. Assfour, S. Leoni and G. Seifer, J. Phys. Chem. C, 114, 13381 (2010).CrossRefGoogle Scholar
  86. 86.
    U. P. N. Tran, K. K. A. Le and N. T. S. Phan, ACS Catal., 1, 120 (2011).CrossRefGoogle Scholar
  87. 87.
    C.M. Miralda, E. E. Macias, M. Zhu, P. Ratnasamy and M. A. Carreon, ACS Catal., 2 180 (2012).CrossRefGoogle Scholar
  88. 88.
    S. E. Park, J. S. Chang, Y. K. Hwang, D. S. Kim, S. H. Jhung and J. S. Hwang, Catal. Survey Asia, 8, 91 (2004).CrossRefGoogle Scholar
  89. 89.
    S. H. Jhung, J. S. Chang, J. S. Hwang and S. E. Park, Micropor. Mesopor. Mater., 64, 33 (2003).CrossRefGoogle Scholar
  90. 90.
    S.H. Jhung, J.H. Lee, J.W. Yoon, J. S. Hwang, S. E. Park and J. S. Chang, Micropor. Mesopor. Mater., 80, 147 (2005).CrossRefGoogle Scholar
  91. 91.
    K. K. Kang, C.H. Park and W. S. Ahn, Catal. Lett., 59, 45 (1999).CrossRefGoogle Scholar
  92. 92.
    S. H. Jhung, J. S. Chang, Y. K. Hwang and S. E. Park, J. Mater. Chem., 14, 280 (2004).CrossRefGoogle Scholar
  93. 93.
    Y.K. Hwang, J. S. Chang, S.E. Park, D. S. Kim, Y. U. Kwon, S. H. Jhung, J. S. Hwang and M. S. Park, Angew. Chem. Int. Ed., 44, 557 (2005).Google Scholar
  94. 94.
    R. Kerner, O. Palchik and A. Gedanken, Chem. Mater., 13, 1413 (2001).CrossRefGoogle Scholar
  95. 95.
    Y. P. Xu, Z. J. Tian, S. J. Wang, Y. Hu, L. Wang, B. C. Wang, Y. C. Ma, L. Hou, J. Y. Yu and L.W. Lin, Angew. Chem. Int. Ed., 45, 3965 (2006).CrossRefGoogle Scholar
  96. 96.
    S. H. Jhung, J. H. Lee, J.W. Yoon, C. Serre, G. Férey and J. S. Chang, Adv. Mater., 19, 121 (2007).CrossRefGoogle Scholar
  97. 97.
    M. Schlesinger, S. Schulze, M. Hietschold and M. Mehring, Micropor. Mesopor. Mater., 132, 121 (2010).CrossRefGoogle Scholar
  98. 98.
    K. S. Suslick, S. B. Choe, A. A. Cichowlas and M.W. Grinstaff, Nature, 353, 414 (1991).CrossRefGoogle Scholar
  99. 99.
    A. Gedanken, Ultrason. Sonochem., 11, 47 (2004).CrossRefGoogle Scholar
  100. 100.
    K. S. Suslick, D. A. Hammerton and R. E. Cline, J. Am. Chem. Soc., 108, 5641 (1986).CrossRefGoogle Scholar
  101. 101.
    A. F. Gross, E. Sherman and J. J. Vajo, Dalton Trans., 41, 5458 2012).CrossRefGoogle Scholar
  102. 102.
    Z. Zhang, S. Xian, H. Xi, H. Wang and Z. Li, Chem. Eng. Sci., 66, 4878 (2011).CrossRefGoogle Scholar
  103. 103.
    D. Farrusseng, Metal-Organic Frameworks-Applications from Catalysis to Gas Storage, Wiley VCH Verlag GmbH & Co. KGaA, Weinheim (2011).CrossRefGoogle Scholar
  104. 104.
    U. Mueller, H. Puetter, M. Hesse and H. Wessel, PCT Patent, 049,892 (2005).Google Scholar
  105. 105.
    I. Richter, M. Schubert and U. Müller, PCT Patent, 131,955 (2007).Google Scholar
  106. 106.
    A. Pichon, A. Lazuen-Garay and S. L. James, CrystEngComm., 8, 211 (2006).CrossRefGoogle Scholar
  107. 107.
    T. Friščić, J. Mater. Chem., 20, 7599 (2010).CrossRefGoogle Scholar
  108. 108.
    A. Lazuen-Garay, A. Pichon and S. L. James, Chem. Soc. Rev., 36, 846 (2007).CrossRefGoogle Scholar
  109. 109.
    H. Sakamoto, R. Matsuda and S. Kitagawa, Dalton Trans., 41, 3956 (2012).CrossRefGoogle Scholar
  110. 110.
    T. Friščič, and L. Fábián, CrystEngComm., 11, 743 (2009).CrossRefGoogle Scholar
  111. 111.
    P. J. Beldon, L. Fábián, R. S. Stein, A. Thirumurugan, A. K. Cheetham and T. Friščič, Angew. Chem. Int. Ed., 49, 9640 (2010).CrossRefGoogle Scholar
  112. 112.
    L. Liu, H. Wei, L. Zhang, J. Li and J. Dong, Stud. Surf. Sci. Catal., 174, 459 (2008).CrossRefGoogle Scholar
  113. 113.
    F. Himeur, I. Stein, D. S. Wragg, A.M. Z. Slawin, P. Lightfoot and R. E. Morris, Solid State Sci., 12, 418 (2010).CrossRefGoogle Scholar
  114. 114.
    S. H. Kim, S. T. Yang, J. Kim and W. S. Ahn, Bull. Korean Chem. Soc., 32, 2783 (2011).CrossRefGoogle Scholar
  115. 115.
    J. Zhang, T. Wu, S. Chen, P. Feng and X. Bu, Angew. Chem. Int. Ed., 48, 3486 (2009).CrossRefGoogle Scholar
  116. 116.
    Z. Lin, A.M. Z. Slawin and R. E. Morris, J. Am. Chem. Soc., 129, 4880 (2007).CrossRefGoogle Scholar
  117. 117.
    P.M. Schoenecker, G. A. Belancik, B. E. Grabicka and K. S. Walton, AIChE J., 59, 1255 (2013).CrossRefGoogle Scholar
  118. 118.
    R. Ameloot, F. Vermoortele, W. Vanhove, M. B. J. Roeffaers, B. F. Sels and D. E. De Vos, Nature Chem., 3, 382 (2011).CrossRefGoogle Scholar
  119. 119.
    D. Witters, N. Vergauwe, R. Ameloot, S. Vermeir, D. De Vos, R. Puers, B. Sels and J. Lammertyn, Adv. Mater., 24, 1316 (2012).CrossRefGoogle Scholar
  120. 120.
    W. Xu, J. Dong, J. Li and F. Wu, J. Chem. Soc. Chem. Commun., 755 (1990).Google Scholar
  121. 121.
    A. J. J. Koekkoek, V. Degirmenci and E. J.M. Hensen, J. Mater. Chem., 21, 9279 (2011).CrossRefGoogle Scholar
  122. 122.
    M. Matsukata, M. Ogura, T. Osaki, P. R. H. P. Rao, M. Nomura and E. Kikuchi, Topics in Catal., 9, 77 (1999).CrossRefGoogle Scholar
  123. 123.
    Q. Shi, Z. Chen, Z. Song, J. Li and J. Dong, Angew. Chem. Int. Ed., 50, 672 (2011).CrossRefGoogle Scholar
  124. 124.
    I. Ahmed, J. Jeon, N.A. Khan and S.H. Jhung, Cryst. Growth Des., 12, 5878 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2013

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical EngineeringInha UniversityIncheonKorea

Personalised recommendations