Korean Journal of Chemical Engineering

, Volume 30, Issue 7, pp 1359–1367 | Cite as

Viruses as self-assembled nanocontainers for encapsulation of functional cargoes

  • Yuanzheng Wu
  • Hetong Yang
  • Hyun-Jae Shin
Review Paper


Viruses naturally exhibit an incredible variety of sophisticated nanostructures, which makes them ideal biological building blocks for nanoengineered material research. By mimicking their spontaneous assembly process, tremendous advances have been made towards utilizing virus and virus-like particles (VLPs) as protein cages, scaffolds, and templates for nanomaterials in the last few years. This review outlines recent progress in the field of bionanotechnology in which viruses are introduced to encapsulate various functional cargoes in a precise and controlled fashion. The encapsulation mechanisms are summarized into three main strategies: electrostatic interaction, chemical conjugation, and covalent attachment by genetic manipulation. The combination with chemical modification and genetic engineering heralds a brilliant future for fabrication of functional nanomaterials. These well-defined architectures will find attractive applications in biosensing, drug delivery, enzyme confinement, light-harvesting system, and pharmaceutical therapy.

Key words

Virus Virus-like Particles (VLPs) Encapsulation Nanomaterials Drug Delivery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.M. Soto and B. R. Ratna, Curr. Opin. Biotechnol., 21, 426 (2010).CrossRefGoogle Scholar
  2. 2.
    J. M. Kim, S.M. Chang, H. Muramatsu and K. Isao, Korean J. Chem. Eng., 28, 987 (2011).CrossRefGoogle Scholar
  3. 3.
    T. Ueno, M. Suzuki, T. Goto, T. Matsumoto, K. Nagayama and Y. Watanabe, Angew. Chem. Int. Ed., 43, 2527 (2004).CrossRefGoogle Scholar
  4. 4.
    K. K. Kim, R. Kim and S. H. Kim, Nature, 394, 595 (1998).CrossRefGoogle Scholar
  5. 5.
    G. J. Domingo, S. Orru and R. N. Perham, J. Mol. Biol., 305, 259 (2001).CrossRefGoogle Scholar
  6. 6.
    J. Rong, Z. Niu, L.A. Lee and Q. Wang, Curr. Opin. Colloid Interface Sci., 16, 441 (2011).CrossRefGoogle Scholar
  7. 7.
    J. K. Pokorski and N. F. Steinmetz, Mol. Pharm., 8, 29 (2011).CrossRefGoogle Scholar
  8. 8.
    G. Lee, Y. S. Cho, S. Park and G.R. Yi, Korean J. Chem. Eng., 28, 1641 (2011).CrossRefGoogle Scholar
  9. 9.
    T. Douglas and M. Young, Science, 312, 873 (2006).CrossRefGoogle Scholar
  10. 10.
    K. T. Kim, S. A. Meeuwissen, R. J. Nolte and J.C. van Hest, Nanoscale, 2, 844 (2010).CrossRefGoogle Scholar
  11. 11.
    K. J. Koudelka and M. Manchester, Curr. Opin. Chem. Biol., 14, 810 (2010).CrossRefGoogle Scholar
  12. 12.
    D. M. Knipe and P.M. Howley, Fields Virology, 5th Ed., Lippincott Williams & Wilkins, Philadelphia (2007).Google Scholar
  13. 13.
    D. L. Caspar and A. Klug, Cold Spring Harb Symp. Quant. Biol., 27, 1 (1962).CrossRefGoogle Scholar
  14. 14.
    M. A. Hemminga, W. L. Vos, P.V. Nazarov, R.B. Koehorst, C. J. Wolfs, R. B. Spruijt and D. Stopar, Eur. Biophys. J., 39, 541 (2010).CrossRefGoogle Scholar
  15. 15.
    C. Gubser, S. Hué, P. Kellam and G. L. Smith, J. Gen. Virol., 85, 105 (2004).CrossRefGoogle Scholar
  16. 16.
    J. A. Speir, S. Munshi, G. Wang, T. S. Baker and J. E. Johnson, Structure, 3, 63 (1995).CrossRefGoogle Scholar
  17. 17.
    F. Tama and C. L. Brooks III, J. Mol. Biol., 318, 733 (2002).CrossRefGoogle Scholar
  18. 18.
    K. Valegard, L. Liljas, K. Fridborg and T. Unge, Nature, 36, 345 (1990).Google Scholar
  19. 19.
    M.H. Parker, S. Casjens and P. E. Prevelige Jr., J. Mol. Biol., 281, 69 (1998).CrossRefGoogle Scholar
  20. 20.
    C.M. Teschke, A. McGough and P.A. Thuman-Commike, Biophys. J., 84, 2585 (2003).CrossRefGoogle Scholar
  21. 21.
    L. Tang, Nat. Struct. Biol., 8, 77 (2001).CrossRefGoogle Scholar
  22. 22.
    A. Klug, Philos. Trans. R. Soc. Lond. B Biol. Sci., 354, 531 (1999).CrossRefGoogle Scholar
  23. 23.
    M. Demir and M. H. Stowell, Nanotechnology, 13, 541 (2002).CrossRefGoogle Scholar
  24. 24.
    J.B. Bancroft, E. Hiebert and C.E. Bracker, Virology, 39, 924 (1969).CrossRefGoogle Scholar
  25. 25.
    F. Li, Z. P. Zhang, J. Peng, Z. Q. Cui, D.W. Pang, K. Li, H. P. Wei, Y. F. Zhou, J. K. Wen and X. E. Zhang, Small, 5, 718 (2009).CrossRefGoogle Scholar
  26. 26.
    Y. Ren, S. M. Wong and L.Y. Lim, J. Gen. Virol., 87, 2749 (2006).CrossRefGoogle Scholar
  27. 27.
    Y. Ma, R. J. Nolte and J. J. Cornelissen, Adv. Drug Deliv. Rev., 64, 811 (2012).CrossRefGoogle Scholar
  28. 28.
    S. E. Aniagyei, C. DuFort, C. C. Kao and B. Dragnea, J. Mater. Chem., 18, 3763 (2008).CrossRefGoogle Scholar
  29. 29.
    T. Douglas and M. Young, Nature, 393, 152 (1998).CrossRefGoogle Scholar
  30. 30.
    F. D. Sikkema, M. Comellas-Aragonès, R.G. Fokkink, B. J. Verduin, J. J. Cornelissen and R. J. Nolte, Org. Biomol. Chem., 5, 54 (2007).CrossRefGoogle Scholar
  31. 31.
    M. Brasch and J. J. Cornelissen, Chem. Commun., 48, 1446 (2012).CrossRefGoogle Scholar
  32. 32.
    W. Shenton, T. Douglas, M. Young, G. Stubbs and S. Mann, Adv. Mater., 11, 253 (1999).CrossRefGoogle Scholar
  33. 33.
    M. C. Daniel, I. B. Tsvetkova, Z. T. Quinkert, A. Murali, M. De, V.M. Rotello, C. C. Kao and B. Dragnea, ACS Nano, 4, 3853 (2010).CrossRefGoogle Scholar
  34. 34.
    L. Loo, R.H. Guenther, S.A. Lommel and S. Franzen, J. Am. Chem. Soc., 129, 11111 (2007).CrossRefGoogle Scholar
  35. 35.
    M. Comellas-Aragonès, H. Engelkamp, V. I. Claessen, N. A. Sommerdijk, A. E. Rowan, P. C. Christianen, J.C. Maan, B. J. Verduin, J. J. Cornelissen and R. J. Nolte, Nat. Nanotechnol., 2, 635 (2007).CrossRefGoogle Scholar
  36. 36.
    M. Uchida, M.T. Klem, M. Allen, P. Suci, M. Flenniken, E. Gillitzer, Z. Varpness, L. O. Liepold, M. Young and T. Douglas, Adv. Mater., 19, 1025 (2007).CrossRefGoogle Scholar
  37. 37.
    T. L. Schlick, Z. Ding, E.W. Kovacs and M. B. Francis, J. Am. Chem. Soc., 127, 3718 (2005).CrossRefGoogle Scholar
  38. 38.
    E.W. Kovacs, J. M. Hooker, D.W. Romanini, P.G. Holder, K. E. Berry and M. B. Francis, Bioconjug. Chem., 18, 1140 (2007).CrossRefGoogle Scholar
  39. 39.
    Q. Zhao, W. Chen, Y. Chen, L. Zhang, J. Zhang and Z. Zhang, Bioconjug. Chem., 22, 346 (2011).CrossRefGoogle Scholar
  40. 40.
    L. A. Lee, Z. Niu and Q. Wang, Nano Res., 2, 349 (2009).CrossRefGoogle Scholar
  41. 41.
    I. J. Minten, L. J. Hendriks, R. J. Nolte and J. J. Cornelissen, J. Am. Chem. Soc., 131, 17771 (2009).CrossRefGoogle Scholar
  42. 42.
    S. Kang, M. Uchida, A. O’Neil, R. Li, P. E. Prevelige and T. Douglas, Biomacromolecules, 11, 2804 (2010).CrossRefGoogle Scholar
  43. 43.
    G. J. Tong, S. C. Hsiao, Z. M. Carrico and M. B. Francis, J. Am. Chem. Soc., 131, 11174 (2009).CrossRefGoogle Scholar
  44. 44.
    C.W. Hung, RNA packaging and gene delivery using Tobacco mosaic virus pseudo virions, Ph. D. Thesis, University of Maryland, U.S. (2008).Google Scholar
  45. 45.
    N. Ohtake, K. Niikura, T. Suzuki, K. Nagakawa, S. Mikuni, Y. Matsuo, M. Kinjo, H. Sawa and K. Ijiro, Chembiochem., 11, 959 (2010).CrossRefGoogle Scholar
  46. 46.
    I. J. Minten, V. I. Claessen, K. Blank, A. E. Rowan, R. J. Nolte and J. J. Cornelissen, Chem. Sci., 2, 358 (2011).CrossRefGoogle Scholar
  47. 47.
    J.E. Glasgow, S. L. Capehart, M.B. Francis and D. Tullman-Ercek, ACS Nano, 6, 8658 (2012).CrossRefGoogle Scholar
  48. 48.
    B. Jung, A. L. Rao and B. Anvari, ACS Nano, 5, 1243 (2011).CrossRefGoogle Scholar
  49. 49.
    R. A. Miller, A. D. Presley and M. B. Francis, J. Am. Chem. Soc., 129, 3104 (2007).CrossRefGoogle Scholar
  50. 50.
    M. Endo, M. Fujitsuka and T. Majima, Chemistry, 13, 8660 (2007).CrossRefGoogle Scholar
  51. 51.
    M. T. Klem, M. Young and T. Douglas, J. Mater. Chem., 18, 3821 (2008).CrossRefGoogle Scholar
  52. 52.
    Z. Su and Q. Wang, Angew. Chem. Int. Ed. Eng., 49, 10048 (2010).CrossRefGoogle Scholar
  53. 53.
    Q. Wang, T. Lin, L. Tang, J. E. Johnson and M. G. Finn, Angew. Chem. Int. Ed., 41, 459 (2002).CrossRefGoogle Scholar
  54. 54.
    Q. Wang, T.R. Chan, R. Hilgraf, V.V. Fokin, K. B. Sharpless and M. G. Finn, J. Am. Chem. Soc., 125, 3192 (2003).CrossRefGoogle Scholar
  55. 55.
    N. F. Steinmetz, Nanomedicine, 6, 634 (2010).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2013

Authors and Affiliations

  1. 1.Department of Chemical and Biochemical EngineeringChosun UniversityGwangjuKorea
  2. 2.Biotechnology Center of Shandong Academy of SciencesJinanChina

Personalised recommendations