Korean Journal of Chemical Engineering

, Volume 30, Issue 7, pp 1429–1435

Inulin conversion to hydroxymethylfurfural by Brønsted acid in ionic liquid and its physicochemical characterization

  • Young-Byung Yi
  • Myoung-Gyu Ha
  • Jin-Woo Lee
  • Chung-Han Chung
Environmental Engineering


A simple conversion process of inulin polymer into hydroxymethylfurfural (HMF) was developed using Brønsted acid catalyst (HCl) in the presence of an ionic liquid, 1-octyl-3-methylimidazolium chloride ([OMIM]Cl). In addition, the physicochemical properties of inulin particle and its depolymerixation products were scrutinized. FESEM and XRD diffraction frequency showed that inulin particles are clustered in a granulated formation and their molecular structure is highly amorphous. FT-IR analysis identified five characteristic frequency regions: Region 1; 700–900, Region 2; 900–1,200, Region 3; 1,200–1,350; Region 4; 1,350–1,500, and Region 5; 1,530–1,800 cm−1. HPLC analysis confirmed that the major composition of inulin consists of fructose and glucose. The synthesis of HMF was significantly affected by the Brønsted catalyst and its concentration. Its highest yield (63.1±5.1 dwt%) was achieved at 0.3M HCl in the presence of [OMIM]Cl. No presence of the Brønsted catalyst exhibited negligible HMF yield (2.3±1.1 dwt%). Our results demonstrate that the Brønsted catalyst plays a pivotal role in the catalytic process of HMF synthesis from inulin polymer.

Key words

Brønsted Acid Hydroxymethylfurfural Inulin Polymer Ionic Liquid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Barclay, M. Ginic-Markovic, P. Cooper and N. Petrovsky, J. Excipients Food Chem., 1, 27 (2010).Google Scholar
  2. 2.
    S. Hu, Z. Zhang, Y. Zhou, J. Song, H. Fan and B. Han, Green Chem., 11, 873 (2009).CrossRefGoogle Scholar
  3. 3.
    O. O. James, S. Maity, L. A. Usman, K. O. Ajanaku, O. O. Ajani, T. O. Siyanbola, T. O. Siyanbola, S. Sahu and R. Chaubey, Energy Environ. Sci., 3, 1833 (2010).CrossRefGoogle Scholar
  4. 4.
    Y.-B. Yi, J.-W. Lee, Y.-H. Choi, S.-M. Park and C.-H. Chung, Biomass Bioenery, 39, 484 (2012).CrossRefGoogle Scholar
  5. 5.
    Y.-B. Yi, M.-K. Ha, J.-W. Lee and C.-H. Chung, J. Cleaner Prod., 41, 244 (2013).CrossRefGoogle Scholar
  6. 6.
    Y. Román-Leshkov, C. J. Barrett, Z. Y. Liu and J. A. Dumesic, Nature, 447, 982 (2007).CrossRefGoogle Scholar
  7. 7.
    J.-A. Chun, J.-W. Lee, Y.-B. Yi, S.-S. Hong and C.-H. Chung, Korean J. Chem. Eng., 27, 920 (2010).Google Scholar
  8. 8.
    J.-A. Chun, J.-W. Lee, Y.-B. Yi, S.-S. Hong and C.-H. Chung, Starch/ Stärke, 62, 326 (2010).CrossRefGoogle Scholar
  9. 9.
    J. Lewkowski, ARKIVOC,1, (ARKAT-USA;ISSN1424-6376), 17 (2001). (Website; http://www.arkat-usa.org/home.aspx?VIEW-MANUSCRIPT&MSID=403).Google Scholar
  10. 10.
    J.-W. Lee, M.-K. Ha, Y.-B. Yi and C.-H. Chung, Carbohydr. Res., 346, 177 (2011).CrossRefGoogle Scholar
  11. 11.
    Y.-B. Yi, M.-K. Ha, J.-W. Lee and C.-H. Chung, Chem. Eng. J., 180, 370 (2012).CrossRefGoogle Scholar
  12. 12.
    Y.-B. Yi, J.-W. Lee, Y.-H. Choi, S.-M. Park and C.-H. Chung, Environ. Chem. Lett., 10, 13 (2012).CrossRefGoogle Scholar
  13. 13.
    H. Zhao, J. E. Holladay, H. Brown and Z.C. Zhang, Science, 316, 1597 (2007).CrossRefGoogle Scholar
  14. 14.
    Y.-B. Yi, M.-K. Ha, J.-W. Lee, S.-M. Park, Y.-H. Choi and C.-H. Chung, J. Ind. Eng. Chem., 19, 523 (2013).CrossRefGoogle Scholar
  15. 15.
    H. Tadesse and R. Luque, Energy Environ. Sci., 4, 3913 (2011).CrossRefGoogle Scholar
  16. 16.
    C. Blecker, C. Fougnies, J.-C. V. Herck, J.-P. Chevalier and M. Paquot, J. Agric. Food Chem., 50, 1602 (2002).CrossRefGoogle Scholar
  17. 17.
    M. Grube, M. Bekers, D. Upite and E. Kaminska, Spectroscopy, 16, 289 (2002).CrossRefGoogle Scholar
  18. 18.
    S. N. Ronkart, M. Paquot, C. S. Blecker, C. Fougnies, L. Doran, C. Lambrechts, B. Norberg and C. Deroanne, Food Biophys., 4, 49 (2009).CrossRefGoogle Scholar
  19. 19.
    C. Sievers, I. Musin, T. Marzialetti, M. B.V. Olarte, P. K. Agrawal and C. Jones, ChemSusChem, 2, 665 (2009).CrossRefGoogle Scholar
  20. 20.
    J. B. Binder and R.T. Raines, Nat. Acad. Sci. USA, 107, 4516 (2010).CrossRefGoogle Scholar
  21. 21.
    C. Li, Q. Wang and Z. K. Zhao, Green Chem., 10, 177 (2008).CrossRefGoogle Scholar
  22. 22.
    Y.-B. Yi, J.-W. Lee, S.-S. Hong, Y.-H. Choi and C.-H. Chung, J. Ind. Eng. Chem., 17, 6 (2011).CrossRefGoogle Scholar
  23. 23.
    J.W. Lee, J.Y. Shin, Y. S. Chun, H. B. Jang, C. E. Song and S.-G. Lee, Account Chem. Res., 43, 985 (2010).CrossRefGoogle Scholar
  24. 24.
    S. Ronkart, C. Blecker, C. Fougnies, J.C. van Herch, J. Wouters and M. Paquot, Carbohydr. Polym., 63, 210 (2006).CrossRefGoogle Scholar
  25. 25.
    S. N. Ronkart, C. Deroanne, M. Paquot, C. Fougnies, J.-C. Lambrechts and C. S. Blecker, Food Biophys., 2, 83 (2007).CrossRefGoogle Scholar
  26. 26.
    M.M. Fares, M. S. Salem and M. Khanfar, Int. J. Pharm., 410, 206 (2011).CrossRefGoogle Scholar
  27. 27.
    J.-J. Max and C. Chapados, J. Phys. Chem., 111, 2679 (2007).CrossRefGoogle Scholar
  28. 28.
    R. H. Wilson, A. C. Smith, M. Kaèuráková, P.K. Saunders, N. Wellner and K.W. Waldron, Plant Physiol., 124, 397 (2000).CrossRefGoogle Scholar
  29. 29.
    T. Akiyama, J. Itoh and K. Fuchibe, Advanced Syn. Catal., 348, 999 (2006).CrossRefGoogle Scholar
  30. 30.
    X. Tong and Y. Li, ChemSusChem, 3, 350 (2010).CrossRefGoogle Scholar
  31. 31.
    C. F. Kautz and A. L. Robinson, J. Amer. Chem. Soc., 50, 1022 (1928).CrossRefGoogle Scholar
  32. 32.
    M. J. Antal, W. S. L. Mok and G. N. Richards, Carbohydr. Res., 199, 91 (1990).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2013

Authors and Affiliations

  • Young-Byung Yi
    • 1
  • Myoung-Gyu Ha
    • 2
  • Jin-Woo Lee
    • 1
  • Chung-Han Chung
    • 1
  1. 1.Department of BiotechnologyDong-A UniversityBusanKorea
  2. 2.High-Technology Components & Materials Research CenterKorea Basic Science InstituteBusanKorea

Personalised recommendations