Advertisement

Korean Journal of Chemical Engineering

, Volume 30, Issue 4, pp 842–851 | Cite as

Regeneration of catalyst clay soils (Tonsil CO 610 G) by supercritical carbon dioxide

  • Hamid Rajaei
  • Ali Akbar Golchehreh
  • Ali Zeinolabedini Hezave
  • Feridun EsmaeilzadehEmail author
Catalysis, Reaction Engineering

Abstract

Extraction of deactivatived materials from contaminated clay soils (Tonsil CO 610 G) by supercritical carbon dioxide was investigated. Effect of different conditions including extraction temperature (308.15–338.15 K) and pressure (100–330 bar) (thermodynamic conditions), flow rate (4.2–42.6 cc/min), and static time (45–85 min) were investigated to find the optimum conditions for extraction of deactivatived materials. Based on the different experiments, optimum conditions for flow rate (4.2 cc/min), static time (85 min) and extraction pressure and temperature (330 bar and 313.15 K) were obtained. In addition, the GC-MS analysis and Bromine index (BI) analysis were revealing that the clay soil is activated and could be used as catalyst again.

Key words

Supercritical Carbon Dioxide Tonsil CO 610 G Extraction Soil Contamination Regeneration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Boutin and E. Badens, J. Food Eng., 92(4), 396 (2009).CrossRefGoogle Scholar
  2. 2.
    P. Tonthubthimthong, S. Chuaprasert, P. Douglas and W. Luewisutthichat, J. Food Eng., 47(4), 289 (2001).CrossRefGoogle Scholar
  3. 3.
    F.H. Ge, X.X. Lin, X. F. Huan, Q. Shi, B. Liang, J. Li and G. Zhong, J. Chin. Med. Mater., 25, 101 (2002) (in Chinese).Google Scholar
  4. 3.
    A. C. Kumoro and M. Hasan, Chin. J. Chem. Eng., 15(6), 877 (2007).CrossRefGoogle Scholar
  5. 4.
    K. X. Chen, X.Y. Zhang, J. Pan, W. C. Zhang, J. Yong and W. H. Yin, J. Cryst. Growth, 258(1–2), 163 (2003).CrossRefGoogle Scholar
  6. 5.
    K. X. Chen, X.Y. Zhang, J. Pan and W. H. Yin, J. Cryst. Growth, 274(1–2), 226 (2005).CrossRefGoogle Scholar
  7. 6.
    B. O. Brady, C. P. Kao, R. P. Gambrell, K.M. Dooley and F. C. Knopf, Ind. Eng. Chem. Res., 26, 261 (1987).CrossRefGoogle Scholar
  8. 7.
    K. M. Dooley, C. P. Kao, R. P. Gambrell and F. C. Knopf, Ind. Eng. Chem. Res., 26, 2058 (1987).CrossRefGoogle Scholar
  9. 8.
    K.M. Dooley, D. Ghonasgi, R. P. Gambrell and F.C. Knopf, Environ. Prog., 9, 197 (1990).CrossRefGoogle Scholar
  10. 9.
    S. B. Hawthorne and D. J. Miller, J. Chromatog., 403, 63 (1987).CrossRefGoogle Scholar
  11. 10.
    S. B. Hawthorne, D. J. Miller, Anal. Chem., 1705 (1987).Google Scholar
  12. 11.
    M. E. McNally and J. R. Wheeler, J. Chromatog., 447, 53 (1988).Google Scholar
  13. 12.
    T. A. Andrews, R. C. Ahlert and D. S. Kosson, Environ. Prog., 9, 204 (1990).CrossRefGoogle Scholar
  14. 13.
    R. K. Hess, C. Erkey and A. Akgerman, J. Supercrit. Fluids, 4, 47 (1991).CrossRefGoogle Scholar
  15. 14.
    A. Akgerman, C. Erkey and S. M. Ghoreishi, Ind. Eng. Chem. Res., 31, 333 (1992).CrossRefGoogle Scholar
  16. 15.
    S. Kothandaraman, R. C. Alhert, E. S. Venkataramani and A. T. Andrews, Environ. Prog., 11, 220 (1992).CrossRefGoogle Scholar
  17. 16.
    V. Lopez-Avila and W. F. Beckert, Supercritical fluid extraction in environmental analysis. supercritical fluid technology: Theoretical and applied approaches to analytical chemistry, F. Bright, M. McNally, Eds., ACS Symposium Series 488; American Chemical Society: Washington, DC (1992).Google Scholar
  18. 17.
    H. Lee, T. E. Peart and R. L. Hong-You, J. Chromatog., 605, 109 (1992).CrossRefGoogle Scholar
  19. 18.
    A. Laitinen, A. Michaux and O. Aaltonen, Environ. Technol., 15, 715 (1994).CrossRefGoogle Scholar
  20. 19.
    S. J. Macnaughton and N. R. Foster, Ind. Eng. Chem. Res., 33, 2757 (1994).CrossRefGoogle Scholar
  21. 20.
    M.D.A. Saldana, V. Nagpal and S. E. Guigard, Environ. Technol., 26, 1013 (2005).CrossRefGoogle Scholar
  22. 21.
    V. Camel, Analyst, 126, 1182 (2001).CrossRefGoogle Scholar
  23. 22.
    E. Bjorklund, T. Nilsson, S. Bowadt, K. Pilorz, L. Mathiasson and S. B. Hawthorne, J. Biochem. Bioph. Methods, 43, 295 (2000).CrossRefGoogle Scholar
  24. 23.
    S. B. Hawthorne and J.W. King, Principles and practice of analytical SFE, chromatography: Principles and practice. II. Practical supercritical fluid chromatography and extraction, Harwood Academic Publishers, 219 (1999).Google Scholar
  25. 24.
    S. Bowadt and S. B. Hawthorne, J. Chromatog. A, 703, 549 (1995).CrossRefGoogle Scholar
  26. 25.
    S. H. Brown, J. R. Waldecker and M. Lourvanij, Process for reducing bromine index of hydrocarbon feedstocks: The United States, US 7744750[P] (2005).Google Scholar
  27. 26.
    C.W. Chen, W. J. Wu, X. S. Zeng, Z.H. Jiang and L Shi, J. Ind. Eng. Chem. Res., 48(23), 10359 (2009).CrossRefGoogle Scholar
  28. 27.
    H. B. Stephen, E. H. Terry and P.W. Arthur, Decreasing BI-reactive contaminants: The United States, US 6368496B1[P] (2002).Google Scholar
  29. 28.
    S. H. Brown, T. E. Helton and A. P. Werner, Decreasing Br-reactive contaminants in aromatic streams: The United States, US 6781023[P] (2004).Google Scholar
  30. 29.
    H. Rajaei, A. Amin, A. Golchehre and F. Esmaeilzadeh, J. Supercrit. Fluids, 67, 1 (2012).CrossRefGoogle Scholar
  31. 30.
    S. B. Hawthorne, A. B. Galy, V. O. Schmitt and D. J. Miller, Anal. Chem., 67, 2723 (1995).CrossRefGoogle Scholar
  32. 31.
    J. J. Langenfeld, S.B. Hawthorne, D. J. Miller and J. Pawliszyn, Anal. Chem., 65, 338 (1993).CrossRefGoogle Scholar
  33. 32.
    P. Chen, W. Zhou and L. L. Tavlarides, Environ. Prog., 16, 227 (1997).CrossRefGoogle Scholar
  34. 33.
    K. Hartonen, S. Bowadt, S. B. Hawthorne and M.-J. Riekkola, J. Chromatog. A, 774, 229 (1997).CrossRefGoogle Scholar
  35. 34.
    E. Bjoerklund, S. Bowadt, L. Mathiasson and S. B. Hawthorne, J. Environ. Sci. Technol., 33, 2193 (1999).CrossRefGoogle Scholar
  36. 35.
    J. J. Langenfeld, S. B. Hawthorne, D. J. Miller and J. Pawliszyn, Anal. Chem., 67, 1727 (1995).CrossRefGoogle Scholar
  37. 36.
    Y. Yang, A. Gharaibeh, S. B. Hawthorne and D. J. Miller, Anal. Chem., 67, 641 (1995).CrossRefGoogle Scholar
  38. 37.
    J. J. Langenfeld, S.B. Hawthorne, D. J. Miller and J. Pawliszyn, Anal. Chem., 65, 338 (1993).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2013

Authors and Affiliations

  • Hamid Rajaei
    • 1
  • Ali Akbar Golchehreh
    • 1
  • Ali Zeinolabedini Hezave
    • 2
  • Feridun Esmaeilzadeh
    • 1
    Email author
  1. 1.Chemical and Petroleum Engineering Department, School of EngineeringShiraz UniversityShirazIran
  2. 2.Dashtestan BranchIslamic Azad UniversityBorazjanIran

Personalised recommendations