Korean Journal of Chemical Engineering

, Volume 30, Issue 2, pp 392–399 | Cite as

Recovery of nickel from chromite overburden, Sukinda using Aspergillus niger supplemented with manganese

  • Sunil Kumar Behera
  • Prangya Parimita Panda
  • Sandeep Kumar Saini
  • Nilotpala Pradhan
  • Lala Behari Sukla
  • Barada Kanta Mishra
Environmental Engineering


Oxalic acid is a prominent metabolite secreted by several fungi under specific conditions, which acts as a metal chelating agent. Amongst different fungal species, Aspergillus niger is favored as the best option for microbial production of oxalic acid. The present study deals with the oxalic acid over production by A. niger in response to manganese supplement to its growth medium, which in turn improves the recovery of nickel from pre-treated chromite overburden(COB) during fungal bioleaching. The metabolic pathway in oxalate bio-synthesis by A. niger involves one prominent cytoplasmic enzyme oxaloacetate acetylhydrolase (OAH), which catalyzes the breakdown of oxaloacetate metabolic intermediate to oxalate and acetate. Oxalic acid production was increased due to supplement of manganese to the culture medium of the A. niger. Manganese acts as cofactor for OAH enzyme; further, it enhances the catalytic activity of OAH to produce more oxalate. With oxalic acid production by A. niger, nickel recovery from pre-treated COB was improved. During the study, a maximum of nickel recovery was achieved up to 38.6% from pre-treated COB by adding 80 ppm of manganese to the culture media, whereas 24.0% of nickel was recovered without supplement of manganese (experiments were performed at 30 °C and the COB pulp density 2% w/v).

Key words

Aspergillus niger Chromite Overburden Manganese Nickel Oxalic Acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.B. Sukla, V.V. Panchanadikar and R. N. Kar, World J. Microb. Biot., 9, 255 (1993).CrossRefGoogle Scholar
  2. 2.
    B. Ahmad, H. N. Bhatti and Sadia Ilyas, Afr. J. Biotechnol., 10(54), 11196 (2011).Google Scholar
  3. 3.
    M. Valix, F. Usai and R. Malik, Min. Eng., 14(2), 197 (2001).CrossRefGoogle Scholar
  4. 4.
    S. Nouren, H. N. Bhatti and S. Ilyas, Afr. J. Biotechnol., 10(52), 10664 (2011).Google Scholar
  5. 5.
    Dutton and C. S. Evans, Can. J. Microbiol., 42, 881 (1996).CrossRefGoogle Scholar
  6. 6.
    K. Bosecker, FEMS Microbiol. Rev., 20, 591 (1997).CrossRefGoogle Scholar
  7. 7.
    W. Burgstaller and F. Schinner, J. Biotechnol., 17, 91 (1993).CrossRefGoogle Scholar
  8. 8.
    K. Tsekova, D. Todorova and S. Ganeva, Int. Biodeter. Biodegr., 64, 447 (2010).CrossRefGoogle Scholar
  9. 9.
    J. C. Pernet, Encyclopaedia of chemical technology, Interscience Publishers Inc., New York (1991).Google Scholar
  10. 10.
    C. P. Kubicek, G. S. Kunar, W. Woèhrer and M. Roèhr, Appl. Environ. Microbiol., 54, 633 (1988).Google Scholar
  11. 11.
    C. P. Kubicek and M. Rohr, CRC Crit. Rev. Biotechnol., 3, 331 (1986).CrossRefGoogle Scholar
  12. 12.
    L. B. Sukla, K.M. Swamy, K. L. Narayana, R.N. Kar and V.V. Panchanadikar, Hydrometallurgy, 37(3), 387 (1995).CrossRefGoogle Scholar
  13. 13.
    F. Anjum, H.N. Bhatti and M.A. Ghaur, Hydrometallurgy, 100, 122 (2010).CrossRefGoogle Scholar
  14. 14.
    F. Anjum, H.N. Bhatti, M. Asgher and M. Shahid, Appl. Clay Sci., 47, 356 (2010).CrossRefGoogle Scholar
  15. 15.
    K. D. Mehta, C. Das and B. D. Pandey, Hydrometallurgy, 105, 89 (2010).CrossRefGoogle Scholar
  16. 16.
    A. J. Balmforth and A. Thomson, Biochem. J., 218, 113 (1984).Google Scholar
  17. 17.
    K. E. Hammel, M. D. Mozuch, K. A. Jr. Jensen and P. J. Kersten, Biochemistry, 33, 13349 (1994).CrossRefGoogle Scholar
  18. 18.
    H. Pedersen, C. Gem and J. Nielsen, J. Mol. Gen. Genet., 263, 281 (2000).CrossRefGoogle Scholar
  19. 19.
    H. Pedersen, B. Christensen, C. Hjort and J. Nielsen, Metab. Eng., 2, 34 (2000).CrossRefGoogle Scholar
  20. 20.
    G. J.G. Ruijter, P. J. I. van de Vondervoort and J. Visser, J. Microbiol., 145, 2569 (1999).Google Scholar
  21. 21.
    C. Chen, Q. Sun, B. Narayanan, D. L. Nuss and O. Herzberg, J. Biol. Chem., 285(34), 26685 (2010).CrossRefGoogle Scholar
  22. 22.
    L. B. Sukla and R. P. Das, Trans. Indian Inst. Met., 40, 351 (1987).Google Scholar
  23. 23.
    S. Ilyas, R. Chi, H. N. Bhatti, I. A. Bhatti and M. A. Ghauri, Bioprocess Biosyst. Eng., 35, 433 (2012).CrossRefGoogle Scholar
  24. 24.
    S. Mohapatra, C. Sengupta, B. D. Nayak, L. B. Sukla and B. K. Mishra, Korean J. Chem. Eng., 25(5), 1070 (2008).CrossRefGoogle Scholar
  25. 25.
    S.K. Behera, P. P. Panda, S. Singh, N. Pradhan, L. B. Sukla and B. K. Mishra, Int. Biodeter. Biodegr., 65, 1035 (2011).CrossRefGoogle Scholar
  26. 26.
    H. Lenz, P. Wunderwald and H. Eggerer, Eur. J. Biochem., 65, 225 (1976).CrossRefGoogle Scholar
  27. 27.
    M. Dubois, K. Gillies, Y. Hamilton, P. Roborts and F. Smith, Anal. Chem., 28, 350 (1956).CrossRefGoogle Scholar
  28. 28.
    S. Mohapatra, S. Bohidar, N. Pradhan, R. N. Kar and L. B. Sukla, Hydrometallurgy, 85, 1 (2007).CrossRefGoogle Scholar
  29. 29.
    Y. Han, H. Joosten, W. Niu, Z. Zhao, P. S. Mariano, M. McCalman, J.V. Kan, P. J Schaap and D. D. Mariano, J. Biol. Chem., 282(13), 9581 (2007).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2012

Authors and Affiliations

  • Sunil Kumar Behera
    • 1
  • Prangya Parimita Panda
    • 1
  • Sandeep Kumar Saini
    • 2
  • Nilotpala Pradhan
    • 1
  • Lala Behari Sukla
    • 1
  • Barada Kanta Mishra
    • 1
  1. 1.Institute of Minerals & Materials Technology (CSIR)BhubeneswarIndia
  2. 2.Utkal UniversityBhubaneswarIndia

Personalised recommendations