Korean Journal of Chemical Engineering

, Volume 29, Issue 12, pp 1666–1669 | Cite as

Use of biologically designed gold nanowire for biosensor application

  • Sung-Hee Shin
  • Gha-Young Kim
  • Joonmok Shim
  • Jungok Kim
  • Hor-Gil Hur
  • Don-Jung Lee
  • Jong-In Song
  • Seung-Hyeon Moon
Rapid Communication

Abstract

A highly sensitive tyrosinase (TYR)-based amperometric biosensor is prepared using biologically designed gold nanowires (AuNWs) for pesticide detection. The AuNWs were synthesized by dodecapeptide Midas-11 and were modified with the formation of self-assembled monolayer (SAM), followed by covalent binding with TYR. The prepared TYR-AuNWs-SPCE (screen printed carbon electrode) was compared with bare, AuNWs-, modified-AuNWs-SPCE by the measurement of cyclic voltammetry. The quantitative relationship between the inhibition percentage and the pesticide concentration at the TYR-AuNWs-SPCE was obtained by measuring the current response in various concentrations of pesticides. The reasonable detection range of parathion was determined to be 0.1 ppt through 10 ppb (R 2 =0.990) with 0.087 ppt of detection limits. The higher sensitivity and wider detection range of the TYR-based biosensor was achieved by the use of biologically synthesized AuNWs.

Key words

Tyrosinase Gold Nanowire Peptide Amperometric Biosensor Pesticide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. J. Llorent-Martinez, P. Ortega-Barrales, M. L. Fernandez-de Cordova and A. Ruiz-Medina, Anal. Chim. Acta, 684, 30 (2011).CrossRefGoogle Scholar
  2. 2.
    B. Boye, E. Brillas, B. Marselli, P. A. Michaud, C. Comninellis, G. Farnia and G. Sandonà, Electrochim. Acta, 51, 2872 (2006).CrossRefGoogle Scholar
  3. 3.
    D. K. Cha, D. Sarr, P. C. Chiu and D.W. Kim, Water Environ. Res., 70, 705 (1998).CrossRefGoogle Scholar
  4. 4.
    J. S. Van Dyk and B. Pletschke, Chemosphere, 82(3), 291 (2011).CrossRefGoogle Scholar
  5. 5.
    Y. D. T. de Albuquerque and L. F. Ferreira, Anal. Chim. Acta, 596, 210 (2007).CrossRefGoogle Scholar
  6. 6.
    H. S. Lee, Y.A. Kim, Y.A. Cho and Y. T. Lee, Chemosphere, 46, 571 (2002).CrossRefGoogle Scholar
  7. 7.
    M. H. Shi, J. J. Xu, S. Zhang, B. H. Liu and J. L. Kong, Talanta, 68, 1089 (2006).CrossRefGoogle Scholar
  8. 8.
    K. A. Joshi, J. Tang, R. Haddon, J. Wang, W. Chen and A. Mulchandani, Electroanalysis, 17, 54 (2005).CrossRefGoogle Scholar
  9. 9.
    M. Kia, A. Islamnezhad, S. Shariati and P. Biparva, Korean J. Chem. Eng., 28, 2064 (2011).CrossRefGoogle Scholar
  10. 10.
    G.Y. Kim, J. Shim, M. S. Kang and S.H. Moon, J. Hazard. Mater., 156, 141 (2008).CrossRefGoogle Scholar
  11. 11.
    B.W. Park, D. S. Kim and D.Y. Yoon, Korean J. Chem. Eng., 28, 64 (2011).CrossRefGoogle Scholar
  12. 12.
    G. D. Liu, J. Wang, R. Barry, C. Petersen, C. Timchalk, P. L. Gassman and Y. H. Lin, Chem.-Eur. J., 14, 9951 (2008).CrossRefGoogle Scholar
  13. 13.
    E. Katz, I. Willner and J. Wang, Electroanalysis, 16, 19 (2004).CrossRefGoogle Scholar
  14. 14.
    Y. Umasankar and S. M. Chen, Sensors, 8, 290 (2008).CrossRefGoogle Scholar
  15. 15.
    S. Cherevko and C. H. Chung, Sensors and Actuators, B: Chemical, 142, 216 (2009).CrossRefGoogle Scholar
  16. 16.
    J. Kim, Y. Rheem, B. Yoo, Y. Chong, K.N. Bozhilov, D. Kim, M. J. Sadowsky, H. G. Hur and N. V. Myung, Acta Biomater., 6, 2681 (2010).CrossRefGoogle Scholar
  17. 17.
    G.Y. Kim, J. Shim, M. S. Kang and S. H. Moon, J. Environ. Monit., 10, 632 (2008).CrossRefGoogle Scholar
  18. 18.
    L. Y. Gorelik and M. V. Voinova, Biosens. Bioelectron., 22, 405 (2006).CrossRefGoogle Scholar
  19. 19.
    J. Shim, J. J. Woo, S.H. Moon and G.Y. Kim, J. Membr. Sci., 330, 341 (2009).CrossRefGoogle Scholar
  20. 20.
    Y. H. Lin, F. Lu and J. Wang, Electroanalysis, 16, 145 (2004).CrossRefGoogle Scholar
  21. 21.
    D. Du, X. Huang, H. Cai and A. D. Zhang, Biosens. Bioelectron., 23, 285 (2007).CrossRefGoogle Scholar
  22. 22.
    J. M. Abad, F. Pariente, L. Hernández, H.D. Abruña and E. Lorenzo, Anal. Chem., 70, 2848 (1998).CrossRefGoogle Scholar
  23. 23.
    S. Viswanathan, H. Radecka and J. Radecki, Biosens. Bioelectron., 24, 2772 (2009).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2012

Authors and Affiliations

  • Sung-Hee Shin
    • 1
  • Gha-Young Kim
    • 2
  • Joonmok Shim
    • 3
  • Jungok Kim
    • 1
  • Hor-Gil Hur
    • 1
  • Don-Jung Lee
    • 4
  • Jong-In Song
    • 4
  • Seung-Hyeon Moon
    • 1
  1. 1.School of Environmental Science and EngineeringGwangju Institute of Science and Technology (GIST)GwangjuKorea
  2. 2.Department of Nuclear Fuel Cycle Technology DevelopmentKorea Atomic Energy Research InstituteDaejeonKorea
  3. 3.Energy Storage CenterKorea Institute of Energy Research (KIER)DaejeonKorea
  4. 4.Department of Nanobio Materials and ElectronicsGwangju Institute of Science and Technology (GIST)GwangjuKorea

Personalised recommendations