Korean Journal of Chemical Engineering

, Volume 30, Issue 2, pp 379–384

Effect of supplying a carbon extracting solution on denitrification in horizontal subsurface flow constructed wetlands

Environmental Engineering

Abstract

Denitrification strongly depends on the availability of carbon source in constructed wetlands (CWs). In this study, several relevant carbon source extracting solutions made from hydrolyzate of selected wetland litters were added to CWs for nitrogen removal enhancement. The feasibility of supplying a carbon extracting solution to improve potential denitrification rate in horizontal subsurface flow constructed wetland was deeply investigated. Combinations of different hydraulic retention time (HRT, especially for 2-day and 4-day) with different influent COD/N ratios were designed to prove the enhancement on denitrification by carbon source supplement. In addition, specific denitrification rate (SDNR) was calculated for the comparison of the nitrogen removal at different COD/N ratios. The sequential operation results on total nitrogen (TN) and nitrate (NO3-N) removal efficiencies were obtained in CW system with an influent COD/N ratio of 4.0. The accumulation of nitrite (NO2-N) was found to be closely related to the removal of NO3-N. Meanwhile, no obvious accumulation of NO2-N was found when the removal of NO3-N was relatively high.

Key words

Carbon Extracting Solution COD/N Ratio Denitrification Horizontal Subsurface Flow Constructed Wetland Nitrogen Removal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. X. Ye and Y. Li, Ecol. Eng., 35, 1043 (2009).CrossRefGoogle Scholar
  2. 2.
    J. Vymazal, Ecol. Eng., 18, 633 (2002).CrossRefGoogle Scholar
  3. 3.
    A. I. Stefanakis and V. A. Tsihrintzis, Desalination, 248, 961 (2009).CrossRefGoogle Scholar
  4. 4.
    J. Vymazal, Ecol. Eng., 35, 1 (2009).CrossRefGoogle Scholar
  5. 5.
    R. H. Kadlec, Ecol. Eng., 33, 126 (2008).CrossRefGoogle Scholar
  6. 6.
    J. Vymazal, Ecol. Eng., 25, 478 (2005).CrossRefGoogle Scholar
  7. 7.
    T. G. Bulc, Ecol. Eng., 26, 365 (2006).CrossRefGoogle Scholar
  8. 8.
    Y. F. Lin, S. R. Jing, T.-W. Wang and D.-Y. Lee, Environ. Pollut., 119, 413 (2002).CrossRefGoogle Scholar
  9. 9.
    T. Sirivedhin and K. A. Gray, Ecol. Eng., 26, 167 (2006).CrossRefGoogle Scholar
  10. 10.
    C. C. Tanner and R. H. Kadlec, Water Sci. Technol., 48, 191 (2003).Google Scholar
  11. 11.
    T. L. Ingersoll and L. A. Baker, Water Res., 32, 677 (1998).CrossRefGoogle Scholar
  12. 12.
    Y. Wen, Y. Chen, N. Zheng, D.H. Yang and Q. Zhou, Bioresour. Technol., 101, 7286 (2010).CrossRefGoogle Scholar
  13. 13.
    S. Y. Gebremariam and M.W. Beutel, Ecol. Eng., 34, 1 (2008).CrossRefGoogle Scholar
  14. 14.
    N. P. Hume, M. S. Fleming and A. J. Horne, Water Res., 36, 577 (2002).CrossRefGoogle Scholar
  15. 15.
    P. J. Vansoest, J. B. Robertson and B.A. Lewis, J. Dairy Sci., 74, 3583 (1991).CrossRefGoogle Scholar
  16. 16.
    N. Mosier, C. Wyman, B. Dale, R. Elander, Y.Y. Lee, M. Holtzapple and M. Ladisch, Bioresour. Technol., 96, 673 (2005).CrossRefGoogle Scholar
  17. 17.
    N. P. Hume, M. S. Fleming and A. J. Horne, Soil Sci. Soc. Am. J., 66, 1706 (2002).CrossRefGoogle Scholar
  18. 18.
    M. D. Wallenstein, D. D. Myrold, M. Firestone and M Voytek, Ecol. Appl., 16, 2143 (2006).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2012

Authors and Affiliations

  • Yi Ding
    • 1
  • Xinshan Song
    • 1
  • Yuhui Wang
    • 1
  • Denghua Yan
    • 1
    • 2
  1. 1.College of Environmental Science & EngineeringDonghua UniversityShanghaiChina
  2. 2.China Institute of Water Resources and Hydropower ResearchBeijingChina

Personalised recommendations