Korean Journal of Chemical Engineering

, Volume 30, Issue 2, pp 434–439

Isothermal vapor-liquid equilibria for the binary systems of ethylene glycol monopropyl ether with 2,2-dimethylbutane and 2,3-dimethylbutane

  • Seonghoon Hyeong
  • Sunghyun Jang
  • Kab-Soo Lee
  • Hwayong Kim
Separation Technology, Thermodynamics

Abstract

Isothermal vapor liquid equilibria for the binary system of ethylene glycol monopropyl ether with 2,2-dimehylbutane and 2,3-dimethylbutane were measured in a circulating water bath at 303.15, 318.15, and 333.15 K. The apparatus was in-house designed and manufactured. Consistency testing of the apparatus was done by comparing the measured vapor pressures to the calculated vapor pressures from the Antoine equation. The measured systems were correlated with a Peng-Robinson equation of state (PR) combined with Wong-Sandler mixing rule for the vapor phase, and NRTL, UNIQUAC, and Wilson activity coefficient models for the liquid phase. All the measured systems showed good agreement with the correlation results.

Key words

Vapor-liquid Equilibria Surfactant Ethylene Glycol Monopropyl Ether 2,2-Dimethylbutane 2,3-Dimethylbutane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. I. Davis and M. Chacon, Thermochim. Acta, 190, 259 (1991).CrossRefGoogle Scholar
  2. 2.
    H.-H. Lai and L.-J. Chen, J. Chem. Eng. Data, 44, 251 (1999).CrossRefGoogle Scholar
  3. 3.
    H.-S. Lee and H. Lee, J.Chem. Eng. Data, 41, 1358 (1996).CrossRefGoogle Scholar
  4. 4.
    S. G. Oh, J. G. Kim and J. D. Kim, Korean J. Chem. Eng., 4, 53 (1987).CrossRefGoogle Scholar
  5. 5.
    F. J. Carmona, V. R. Bhethanabotla, S.W. Campbell, J.A. González, I. García de la Fuente and J. C. Cobos, J. Chem. Thermodyn., 33, 47 (2001).CrossRefGoogle Scholar
  6. 6.
    F. J. Carmona, J.A. González, I. García de la Fuente, J. C. Cobos, V. R. Bhethanabotla and S.W. Campbell, J. Chem. Eng. Data, 45, 699 (2000).CrossRefGoogle Scholar
  7. 7.
    B. Ramsauer, R. Neueder and W. Kunz, Fluid Phase Equilib., 272, 84 (2008).CrossRefGoogle Scholar
  8. 8.
    S. Jang, M. S. Shin, Y. Lee and H. Kim, J. Chem. Thermodyn., 41, 51 (2009).CrossRefGoogle Scholar
  9. 9.
    Y. Lee, S. Jang, M. S. Shin and H. Kim, Fluid Phase Equilib., 276, 53 (2009).CrossRefGoogle Scholar
  10. 10.
    S. Jang, S. Hyeong, M. S. Shin and H. Kim, Fluid Phase Equilib., 298, 270 (2010).CrossRefGoogle Scholar
  11. 11.
    S. Hyeong, S. Jang, C. J. Lee and H. Kim, J.Chem. Eng. Data, 56, 5028 (2011).CrossRefGoogle Scholar
  12. 12.
    D.Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundamentals, 15, 59 (1976).CrossRefGoogle Scholar
  13. 13.
    D. S. Hill Wong and S. I. Sandler, AIChE J., 38, 671 (1992).CrossRefGoogle Scholar
  14. 14.
    H. Renon and J.M. Prausnitz, AIChE J., 14, 135 (1968).CrossRefGoogle Scholar
  15. 15.
    D. S. Abrams and J.M. Prausnitz, AIChE J., 21, 116 (1975).CrossRefGoogle Scholar
  16. 16.
    G.M. Wilson, Journal of the American Chemical Society, 86, 127 (1964).CrossRefGoogle Scholar
  17. 17.
    Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Technical Note 1297, 1994 Edition.Google Scholar
  18. 18.
    NIST Chemistry Webbook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, http://webbook.nist.gov/chemistry.
  19. 19.
    DIPPR 801 Database, Design Institute for Physical Property Data; American Institute of Chemical Engineers.Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2012

Authors and Affiliations

  • Seonghoon Hyeong
    • 1
  • Sunghyun Jang
    • 1
  • Kab-Soo Lee
    • 2
  • Hwayong Kim
    • 1
  1. 1.School of Chemical & Biological Engineering and Institute of Chemical ProcessesSeoul National UniversitySeoulKorea
  2. 2.Environmental System EngineeringKimpo CollegeKimpoKorea

Personalised recommendations