Korean Journal of Chemical Engineering

, Volume 30, Issue 1, pp 33–44 | Cite as

Non-Newtonian power-law flow across a confined triangular bluff body in a channel

Transport Phenomena

Abstract

Wall effects on the flow of incompressible non-Newtonian power-law fluids across an equilateral triangular cylinder confined in a horizontal plane channel have been investigated for the range of conditions: Reynolds number, Re=1–40, power-law index, n=0.4–1.8 (covering shear-thinning, Newtonian and shear-thickening behaviors) and blockage ratio=0.125–0.5. Extensive numerical results on flow pattern, wake/recirculation length, individual and overall drag coefficients, variation of pressure coefficient on the surface of the triangular cylinder and so forth are reported to elucidate the combined effect of power-law index, blockage ratio and Reynolds number. The size of vortices decreases with an increase in the value of the blockage ratio and/or power-law index. For a fixed value of the Reynolds number, individual and overall drags decrease with decrease in power-law index and/or blockage ratio in steady confined flow regime. Simple correlations of wake length and drag are also obtained for the range of settings considered.

Key words

Non-Newtonian Fluids Drag Wake Length Reynolds Number Power-law Index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. P. Chhabra and J. F. Richardson, Non-newtonian flow in the process industries, Butterworth-Heinemann, Oxford (1999).Google Scholar
  2. 2.
    R. P. Chhabra, Bubbles, Drops and Particles in Non-Newtonian Fluids, second Ed., CRC Press, Boca Raton, FL (2006).CrossRefGoogle Scholar
  3. 3.
    S. J. D. D’Alessio and J. P. Pascal, Acta Mechanica, 117, 87 (1996).CrossRefGoogle Scholar
  4. 4.
    R. P. Chhabra, A. A. Soares and J.M. Ferreira, Acta Mechanica, 172, 1 (2004).CrossRefGoogle Scholar
  5. 5.
    S. J. D. D’Alessio and L. A. Finlay, Ind. Eng. Chem. Res., 43, 8407 (2004).CrossRefGoogle Scholar
  6. 6.
    A.A. Soares, J.M. Ferreira and R. P. Chhabra, Ind. Eng. Chem. Res., 44, 5815 (2005).CrossRefGoogle Scholar
  7. 7.
    W. A. Khan, J. R. Culham and M.M. Yovanovich, J. Heat Transfer, 128, 870 (2006).CrossRefGoogle Scholar
  8. 8.
    R. P. Bharti, R. P. Chhabra and V. Eswaran, Canadian J. Chem. Eng., 84, 406 (2006).CrossRefGoogle Scholar
  9. 9.
    R. P. Bharti, R. P. Chhabra and V. Eswaran, Int. J. Heat Mass Transfer, 50, 977 (2007).CrossRefGoogle Scholar
  10. 10.
    R. P. Bharti, R. P. Chhabra and V. Eswaran, Ind. Eng. Chem. Res., 46, 3820 (2007).CrossRefGoogle Scholar
  11. 11.
    P. Sivakumar, R. P. Bharti and R. P. Chhabra, Chem. Eng. Sci., 61, 6035 (2006).CrossRefGoogle Scholar
  12. 12.
    M. J. Shah, E. E. Petersen and A. Acrivos, AIChE J., 8, 542 (1962).CrossRefGoogle Scholar
  13. 13.
    P.M. Coelho and F. T. Pinho, J. Non-Newtonian Fluid Mech., 110, 143 (2003).CrossRefGoogle Scholar
  14. 14.
    P.M. Coelho and F. T. Pinho, J. Non-Newtonian Fluid Mech., 110, 177 (2003).CrossRefGoogle Scholar
  15. 15.
    P.M. Coelho and F. T. Pinho, J. Non-Newtonian Fluid Mech., 121, 55 (2004).Google Scholar
  16. 16.
    V. K. Patnana, R. P. Bharti and R. P. Chhabra, Chem. Eng. Sci., 64, 2978 (2009).CrossRefGoogle Scholar
  17. 17.
    A. K. Dhiman, R. P. Chhabra and V. Eswaran, Chem. Eng. Res. Design, 84A, 300 (2006).CrossRefGoogle Scholar
  18. 18.
    A. K. Dhiman, N. Anjaiah, R. P. Chhabra and V. Eswaran, Trans. ASME J. Fluids Eng., 129, 506 (2007).CrossRefGoogle Scholar
  19. 19.
    A. K. Dhiman, R. P. Chhabra and V. Eswaran, J. Non-Newtonian Fluid Mech., 148, 141 (2008).CrossRefGoogle Scholar
  20. 20.
    Akhilesh K. Sahu, R. P. Chhabra and V. Eswaran, J. Non-Newtonian Fluid Mech., 160, 157 (2009).CrossRefGoogle Scholar
  21. 21.
    A. K. Sahu, R. P. Chhabra and V. Eswaran, J. Non-Newt. Fluid Mech., 165, 752 (2010).CrossRefGoogle Scholar
  22. 22.
    P. Koteswara Rao, A. K. Sahu and R. P. Chhabra, Int. J. Heat Mass Transfer, 54, 390 (2011).CrossRefGoogle Scholar
  23. 23.
    Mohamed Bouaziz, Sameh Kessentini and Saïd Turki, Int. J. Heat Mass Transfer, 53, 5420 (2010).CrossRefGoogle Scholar
  24. 24.
    A. Prhashanna, A. K. Sahu and R. P. Chhabra, Int. J. Therm. Sci., 50, 2027 (2011).CrossRefGoogle Scholar
  25. 25.
    H. Abbassi, S. Turki and S. Ben Nasrallah, Numerical Heat Transfer, Part A, 39, 307 (2001).CrossRefGoogle Scholar
  26. 26.
    H. Abbassi, S. Turki and S. Ben Nasrallah, Int. J. Therm. Sci., 40, 649 (2001).CrossRefGoogle Scholar
  27. 27.
    A. K. De and A. Dalal, ASME J. Heat Transfer, 129, 646 (2007).CrossRefGoogle Scholar
  28. 28.
    Himadri Chattopadhyay, Int. J. Therm. Sci., 46, 501 (2007).CrossRefGoogle Scholar
  29. 29.
    A. K. Dhiman and S. Srikanth, Steady state flow across a triangular cylinder placed in a channel, 62nd Annual Session of Indian Chemical Engineering Congress, CHEMCON 2009, Dept. of Chemical Eng., Andhra University, Viskhapatnam, India, Dec. 27–30 (2009).Google Scholar
  30. 30.
    Mousa Farhadi, Kurosh Sedighi and Afshin Mohsenzadeh Korayem, Int. J. Therm. Sci., 49, 1010 (2010).CrossRefGoogle Scholar
  31. 31.
    S. Srikanth, A. K. Dhiman and S. Bijjam, Int. J. Therm. Sci., 49, 2191 (2010).CrossRefGoogle Scholar
  32. 32.
    Mohamed Ali, O. Zeitoun and A. Nuhait, Int. J. Therm. Sci., 50, 106 (2011).CrossRefGoogle Scholar
  33. 33.
    A. K. De and A. Dalal, Int. J. Numerical Methods Fluids, 52, 801 (2006).CrossRefGoogle Scholar
  34. 34.
    A. Dalal, V. Eswaran and G. Biswas, Numer. Heat Transfer B, 54, 238 (2008).CrossRefGoogle Scholar
  35. 35.
    Amit Kumar Dhiman, Fluid flow and heat transfer across a triangular cylinder, Proc. 20th National and 9th ISHMT-ASME Heat and Mass Transfer Conference, Paper No: 10HMTC185, Indian Institute of Technology Mumbai, India, Jan. 4–6 (2010).Google Scholar
  36. 36.
    Amit Kumar Dhiman and Radhe Shyam, Unsteady heat transfer across a triangular cylinder, Proc. 20th National and 9th ISHMT-ASME Heat and Mass Transfer Conference, Paper No: 10HMTC260, Indian Institute of Technology Mumbai, India, Jan. 4–6 (2010).Google Scholar
  37. 37.
    O. Zeitoun, Mohamed Ali and A. Nuhait, Int. J. Therm. Sci., 50, 1685 (2011).CrossRefGoogle Scholar
  38. 38.
    R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, Second Ed., Wiley, New York (2002).Google Scholar
  39. 39.
    Amit Dhiman and Radhe Shyam, ISRN Mech. Eng., 2011, 1 (2011).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2012

Authors and Affiliations

  1. 1.Department of Chemical EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations